Artículo
Positive rigs
Fecha de publicación:
11/2023
Editorial:
De Gruyter
Revista:
Forum Mathematicum
ISSN:
0933-7741
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A positive rig is a commutative and unitary semi-ring A such that 1+x" role="presentation">1+x is invertible for every x∈A" role="presentation">x∈A .We show that the category of positive rigs shares many properties with that of K-algebras for a (non-algebraically closed) field K.In particular, it is coextensive and, although we do not have an analogue of Hilbert’s basis theorem for positive rigs,we show that every finitely presentable positive rig is a finite direct product of directly indecomposable ones.We also describe free positive rigs as rigs of rational functions with non-negative rational coefficients, and we give a characterization of the positive rigs with a unique maximal ideal.
Palabras clave:
Extensive categories
,
Rig Geometry
,
Commutative Algebra
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Menni, Matías; Positive rigs; De Gruyter; Forum Mathematicum; 11-2023; 1-17
Compartir
Altmétricas