Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Hybrid Mathematical Programming Discrete-Event Simulation Approach for Large-Scale Scheduling Problems

Castro, Pedro M.; Aguirre, Adrian MarceloIcon ; Zeballos, Luis JavierIcon ; Mendez, Carlos AlbertoIcon
Fecha de publicación: 08/2011
Editorial: American Chemical Society
Revista: Industrial & Engineering Chemical Research
ISSN: 0888-5885
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Procesos Químicos

Resumen

This article presents a new algorithm for industrially sized problems that, because of the large number of tasks to schedule, are either intractable or result in poor solutions when solved with full-space mathematical programming approaches. Focus is set on a special type of multistage batch plant featuring a single unit per stage, zero-wait storage policies, and a single transportation device for moving lots between stages. The algorithm incorporates a mixed-integer linear programming (MILP) continuous-time formulation and a discrete-event simulation model to generate a detailed schedule. More precisely, three stages are involved: (i) finding the best processing sequence, assuming that the transportation device is always available; (ii) generating a feasible schedule, taking into account the shared transportation resource; (iii) improving the schedule through a neighborhood search procedure. Relaxed and constrained versions of the full-space MILP are involved in stages (i) and (iii) with the simulation model taking care of stage (ii). Several examples are solved to illustrate the capabilities of the proposed method with the results showing better performance when compared to other published approaches. The balance between solution quality and total computational effort can easily be shifted by changing the number of lots rescheduled per iteration.
Palabras clave: OPTIMIZATION , MIXED-INTEGER LINEAR PROGRAMMING , SHORT-TERM SCHEDULING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.886Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/238952
URL: http://pubs.acs.org/doi/abs/10.1021/ie200841a
DOI: http://dx.doi.org/10.1021/ie200841a
Colecciones
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Castro, Pedro M.; Aguirre, Adrian Marcelo; Zeballos, Luis Javier; Mendez, Carlos Alberto; Hybrid Mathematical Programming Discrete-Event Simulation Approach for Large-Scale Scheduling Problems; American Chemical Society; Industrial & Engineering Chemical Research; 50; 18; 8-2011; 10665-10680
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES