Artículo
Uniqueness and sign properties of minimizers in a quasilinear indefinite problem
Fecha de publicación:
06/2021
Editorial:
American Institute of Mathematical Sciences
Revista:
Communications On Pure And Applied Analysis
ISSN:
1534-0392
e-ISSN:
1553-5258
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let 1 < q < p and a ∈ C(Ω) be sign-changing, where Ω is abounded and smooth domain of RN . We show that the functionalIq (u) :=∫Ω( 1p |∇u|p − 1q a(x)|u|q),has exactly one nonnegative minimizer Uq (in W 1,p0 (Ω) or W 1,p(Ω)). In addi-tion, we prove that Uq is the only possible positive solution of the associatedEuler-Lagrange equation, which shows that this equation has at most one pos-itive solution. Furthermore, we show that if q is close enough to p then Uqis positive, which also guarantees that minimizers of Iq do not change sign.Several of these results are new even for p = 2.
Palabras clave:
Uniqueness
,
Quasilinear
,
Indefinite
,
Sublinear
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Kaufmann, Uriel; Ramos Quoirin, Humberto Rodrigo; Umezu, Kenichiro; Uniqueness and sign properties of minimizers in a quasilinear indefinite problem; American Institute of Mathematical Sciences; Communications On Pure And Applied Analysis; 20; 6; 6-2021; 2313-2322
Compartir
Altmétricas