Mostrar el registro sencillo del ítem
dc.contributor.author
Jobbagy Gampel, Esteban Gabriel
dc.contributor.author
Jackson, Robert B.
dc.date.available
2024-07-02T13:36:51Z
dc.date.issued
2007-12
dc.identifier.citation
Jobbagy Gampel, Esteban Gabriel; Jackson, Robert B.; Groundwater and soil chemistry changes under phreatophytic tree plantations; American Geophysical Union; Journal of Geophysical Research; 112; 12-2007; 1-15
dc.identifier.issn
0148-0227
dc.identifier.uri
http://hdl.handle.net/11336/238829
dc.description.abstract
The onset of groundwater consumption by plants can initiate a pathway of chemical inputs from aquifers to ecosystems, typically absent in groundwater recharge areas. We explored this biogeochemical transfer and its influence on soils in phreatophytic eucalypt plantations and native grasslands of the Pampas (Argentina). Groundwater and soil chemical observations at three grassland/plantation pairs were complemented with more detailed analyses along a 400-m-long grassland-plantation transect. Although tree plantations showed a widespread and homogeneous salinization of groundwater and soils at all study sites, chemical contrasts between the plantation edge and core were evident along the study transect. Nonsalty, slightly acidic, bicarbonate-dominated waters in the grassland changed sharply within the plantation, with dissolved chloride, sulfate, calcium, and magnesium peaking at the plantation core (200 m away from the grassland) and dissolved sodium, carbonate, bicarbonate, and pH peaking toward the edge (0–50 m away from the grassland) and declining toward the core. In agreement with these differences, soil alkalinization was the strongest at the plantation edge but absent in the core. Groundwater flow simulations using FLOWNET suggested trajectories of increasing length and depth and older groundwater ages (confirmed by tritium analyses) toward the plantation core, explaining the hydrochemical contrasts within the plantation. Flow simulations and chloride mass balances suggested discharges of 250–500 mm yr−1 to the plantations. In our sites phreatophytic discharge controlled solute transfers from groundwater through (1) altered flow within the aquifer, affecting solute transport to the rooting zone, and (2) water uptake plus solute exclusion, concentrating solutes in the rooting zone. While the first mechanism may be restricted to the core of large phreatophytic areas, the second is likely to occur more generally in phreatophytic ecosystems.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Geophysical Union
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Groundwater
dc.subject.classification
Ciencias del Suelo
dc.subject.classification
Agricultura, Silvicultura y Pesca
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
Groundwater and soil chemistry changes under phreatophytic tree plantations
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-06-04T15:03:51Z
dc.journal.volume
112
dc.journal.pagination
1-15
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Washington DC
dc.description.fil
Fil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
dc.description.fil
Fil: Jackson, Robert B.. University of Duke; Estados Unidos
dc.journal.title
Journal of Geophysical Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1029/2006JG000246
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2006JG000246
Archivos asociados