Mostrar el registro sencillo del ítem
dc.contributor.author
Kaufmann, Uriel
dc.contributor.author
Ramos Quoirin, Humberto Rodrigo
dc.contributor.author
Umezu, Kenichiro
dc.date.available
2024-07-02T10:21:34Z
dc.date.issued
2021-08
dc.identifier.citation
Kaufmann, Uriel; Ramos Quoirin, Humberto Rodrigo; Umezu, Kenichiro; Uniqueness and positivity issues in a quasilinear indefinite problem; Springer; Calculus Of Variations And Partial Differential Equations; 60; 5; 8-2021; 1-22
dc.identifier.issn
0944-2669
dc.identifier.uri
http://hdl.handle.net/11336/238755
dc.description.abstract
We consider the problem(Pλ ) − p u = λu p−1 + a(x)u q−1, u ≥ 0 in under Dirichlet or Neumann boundary conditions. Here is a smooth bounded domain ofRN (N ≥ 1), λ ∈ R, 1 < q < p, and a ∈ C() changes sign. These conditions enablethe existence of dead core solutions for this problem, which may admit multiple nontrivialsolutions. We show that for λ < 0 the functionalIλ (u) :=∫( 1p |∇u|p − λp |u|p − 1q a(x)|u|q),defined in X = W 1, p0 () or X = W 1, p(), has exactly one nonnegative global minimizer,and this one is the only solution of (Pλ ) being positive in +a (the set where a > 0). Inparticular, this problem has at most one positive solution for λ < 0. Under some conditionon a, the above uniqueness result fails for some values of λ > 0 as we obtain, besides theground state solution, a second solution positive in +a . We also provide conditions on λ,a and q such that these solutions become positive in , and analyze the formation of deadcores for a generic solution.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
uniqueness
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Uniqueness and positivity issues in a quasilinear indefinite problem
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-06-28T14:40:39Z
dc.journal.volume
60
dc.journal.number
5
dc.journal.pagination
1-22
dc.journal.pais
Alemania
dc.description.fil
Fil: Kaufmann, Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
dc.description.fil
Fil: Ramos Quoirin, Humberto Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
dc.description.fil
Fil: Umezu, Kenichiro. Ibaraki University; Japón
dc.journal.title
Calculus Of Variations And Partial Differential Equations
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00526-021-02057-8
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00526-021-02057-8
Archivos asociados