Mostrar el registro sencillo del ítem

dc.contributor.author
Kaufmann, Uriel  
dc.contributor.author
Ramos Quoirin, Humberto Rodrigo  
dc.contributor.author
Umezu, Kenichiro  
dc.date.available
2024-07-02T10:21:34Z  
dc.date.issued
2021-08  
dc.identifier.citation
Kaufmann, Uriel; Ramos Quoirin, Humberto Rodrigo; Umezu, Kenichiro; Uniqueness and positivity issues in a quasilinear indefinite problem; Springer; Calculus Of Variations And Partial Differential Equations; 60; 5; 8-2021; 1-22  
dc.identifier.issn
0944-2669  
dc.identifier.uri
http://hdl.handle.net/11336/238755  
dc.description.abstract
We consider the problem(Pλ ) − p u = λu p−1 + a(x)u q−1, u ≥ 0 in under Dirichlet or Neumann boundary conditions. Here is a smooth bounded domain ofRN (N ≥ 1), λ ∈ R, 1 < q < p, and a ∈ C() changes sign. These conditions enablethe existence of dead core solutions for this problem, which may admit multiple nontrivialsolutions. We show that for λ < 0 the functionalIλ (u) :=∫( 1p |∇u|p − λp |u|p − 1q a(x)|u|q),defined in X = W 1, p0 () or X = W 1, p(), has exactly one nonnegative global minimizer,and this one is the only solution of (Pλ ) being positive in +a (the set where a > 0). Inparticular, this problem has at most one positive solution for λ < 0. Under some conditionon a, the above uniqueness result fails for some values of λ > 0 as we obtain, besides theground state solution, a second solution positive in +a . We also provide conditions on λ,a and q such that these solutions become positive in , and analyze the formation of deadcores for a generic solution.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
uniqueness  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Uniqueness and positivity issues in a quasilinear indefinite problem  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-06-28T14:40:39Z  
dc.journal.volume
60  
dc.journal.number
5  
dc.journal.pagination
1-22  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Kaufmann, Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.description.fil
Fil: Ramos Quoirin, Humberto Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.description.fil
Fil: Umezu, Kenichiro. Ibaraki University; Japón  
dc.journal.title
Calculus Of Variations And Partial Differential Equations  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00526-021-02057-8  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00526-021-02057-8