Artículo
Norm inequalities for the spectral spread of Hermitian operators
Fecha de publicación:
07/2023
Editorial:
Wiley VCH Verlag
Revista:
Mathematische Nachrichten
ISSN:
0025-584X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work, we introduce a new measure for the dispersion of the spectral scale of a Hermitian (self-adjoint) operator acting on a separable infinite-dimensional Hilbert space that we call spectral spread. Then, we obtain some submajorization inequalities involving the spectral spread of self-adjoint operators, that are related to Tao's inequalities for anti-diagonal blocks of positive operators, Kittaneh's commutator inequalities for positive operators and also related to the arithmetic–geometric mean inequality. In turn, these submajorization relations imply inequalities for unitarily invariant norms (in the compact case).
Palabras clave:
SPECTRAL SPREAD
,
TAO’S INEQUALITY
,
COMMUTATOR INEQUALITIES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Massey, Pedro Gustavo; Stojanoff, Demetrio; Zarate, Sebastian Gonzalo; Norm inequalities for the spectral spread of Hermitian operators; Wiley VCH Verlag; Mathematische Nachrichten; 296; 9; 7-2023; 4335-4356
Compartir
Altmétricas