Mostrar el registro sencillo del ítem

dc.contributor.author
Vensaus, Priscila  
dc.contributor.author
Liang, Yunchang  
dc.contributor.author
Ansermet, Jean Philippe  
dc.contributor.author
Soler Illia, Galo Juan de Avila Arturo  
dc.contributor.author
Lingenfelder, Magalí Alejandra  
dc.date.available
2024-06-28T10:29:54Z  
dc.date.issued
2024-04  
dc.identifier.citation
Vensaus, Priscila; Liang, Yunchang; Ansermet, Jean Philippe; Soler Illia, Galo Juan de Avila Arturo; Lingenfelder, Magalí Alejandra; Enhancement of electrocatalysis through magnetic field effects on mass transport; Nature Publishing Group; Nature Communications; 15; 1; 4-2024; 1-11  
dc.identifier.issn
2041-1723  
dc.identifier.uri
http://hdl.handle.net/11336/238546  
dc.description.abstract
Magnetic field effects on electrocatalysis have recently gained attention due to the substantial enhancement of the oxygen evolution reaction (OER) on ferromagnetic catalysts. When detecting an enhanced catalytic activity, the effect of magnetic fields on mass transport must be assessed. In this study, we employ a specifically designed magneto-electrochemical system and non-magnetic electrodes to quantify magnetic field effects. Our findings reveal a marginal enhancement in reactions with high reactant availability, such as the OER, whereas substantial boosts exceeding 50% are observed in diffusion limited reactions, exemplified by the oxygen reduction reaction (ORR). Direct visualization and quantification of the whirling motion of ions under a magnetic field underscore the importance of Lorentz forces acting on the electrolyte ions, and demonstrate that bubbles’ movement is a secondary phenomenon. Our results advance the fundamental understanding of magnetic fields in electrocatalysis and unveil new prospects for developing more efficient and sustainable energy conversion technologies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Nature Publishing Group  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
ELECTROCATALYSIS  
dc.subject
ENERGY  
dc.subject
MATERIALS  
dc.subject
SURFACES  
dc.subject.classification
Otras Nanotecnología  
dc.subject.classification
Nanotecnología  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Enhancement of electrocatalysis through magnetic field effects on mass transport  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-06-24T10:02:32Z  
dc.journal.volume
15  
dc.journal.number
1  
dc.journal.pagination
1-11  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Vensaus, Priscila. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. École Polytechnique Fédérale de Lausanne; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Liang, Yunchang. Ecole Polytechnique Federale de Lausanne. Max Planck-epfl Center For Molecularnanosciencie And Technology; Francia  
dc.description.fil
Fil: Ansermet, Jean Philippe. Ecole Polytechnique Federale de Lausanne. Max Planck-epfl Center For Molecularnanosciencie And Technology; Francia  
dc.description.fil
Fil: Soler Illia, Galo Juan de Avila Arturo. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Lingenfelder, Magalí Alejandra. Ecole Polytechnique Federale de Lausanne. Max Planck-epfl Center For Molecularnanosciencie And Technology; Francia  
dc.journal.title
Nature Communications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41467-024-46980-8  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/s41467-024-46980-8