Mostrar el registro sencillo del ítem

dc.contributor.author
Yohai del Cerro, Lucía  
dc.contributor.author
Uheida, Abdusalam  
dc.contributor.author
Pellice, Sergio Antonio  
dc.date.available
2024-06-28T09:26:53Z  
dc.date.issued
2023-12  
dc.identifier.citation
Yohai del Cerro, Lucía; Uheida, Abdusalam; Pellice, Sergio Antonio; Nanoparticle-nanofiber synergistic matrix for highly effective arsenic adsorption: material design and performance evaluation; Springer; Journal of Sol-Gel Science and Technology; 12-2023; 1-16  
dc.identifier.issn
0928-0707  
dc.identifier.uri
http://hdl.handle.net/11336/238535  
dc.description.abstract
Arsenic in groundwater poses serious health risks. Over the last decade, adhering to World Health Organization (WHO) directives, permissible arsenic levels in drinking water were reduced, requiring efficient, cost-effective, and user-friendly technologies. In this work, a hybrid nanocomposite membrane (HNM) with adsorbent mesoporous silica nanoparticles (MSN) covalently linked to organic electrospun nanofibers was developed. MSN were synthesized and superficially modified in order to be physical and chemically effective for both the conformation of the HNM and the adsorption of arsenic(V). Materials were structurally characterised by N2 adsorption/desorption, SEM, TEM, TGA, FTIR and evaluated for As(V) removal in synthetic and real groundwater samples at pH 8. In synthetic solutions, HNM lowers arsenic below WHO limits in less than 60 minutes, showing a very fast adsorption kinetic during the first 15 minutes. The adsorption mechanism adheres to a pseudo-second order reaction, signifying chemical bonding of As(V) to active sites. Also, Langmuir model aligns with the adsorption isotherm, indicating surface saturation with a monolayer of arsenate species. HNM sustains capacity (>94%) over five adsorption/desorption cycles, enhancing viability for reuse. When exposed to real contaminated water, HNM achieves more than 60% adsorption within 60 minutes and 90% surface regeneration, an outstanding result for the treatment of real environmental samples without prior treatments. Therefore, this hybrid nanocomposite membrane offers an effective and viable alternative for the removal of arsenate ions from contaminated water. These outcomes could forward the design of new treatment devices with an effective and environmentally acceptable technology for arsenic removal.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
NANOCOMPOSITES  
dc.subject
SURFACE ANALYSIS  
dc.subject
PHYSICAL PROPERTIES  
dc.subject
ELECTROSPINNING  
dc.subject.classification
Compuestos  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Nanoparticle-nanofiber synergistic matrix for highly effective arsenic adsorption: material design and performance evaluation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-06-25T10:41:31Z  
dc.journal.pagination
1-16  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Yohai del Cerro, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Uheida, Abdusalam. Royal Institute of Technology; Suecia  
dc.description.fil
Fil: Pellice, Sergio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.journal.title
Journal of Sol-Gel Science and Technology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10971-023-06277-6  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10971-023-06277-6