Mostrar el registro sencillo del ítem

dc.contributor.author
Menni, Matías  
dc.date.available
2024-06-25T11:22:40Z  
dc.date.issued
2024-05  
dc.identifier.citation
Menni, Matías; Bi-directional models of 'radically synthetic' differential geometry; Mount Allison University; Theory And Applications Of Categories; 40; 15; 5-2024; 413-429  
dc.identifier.issn
1201-561X  
dc.identifier.uri
http://hdl.handle.net/11336/238392  
dc.description.abstract
The radically synthetic foundation for smooth geometry formulated in [Law11] postulates a space T with the property that it has a unique point and, out of the monoid T^T of endomorphisms, it extracts a submonoid R which, in many cases, is the (commutative) multiplication of a rig structure. The rig R is said to be bi-directional if its subobject of invertible elements has two connected components. In this case, R may be equipped with a pre-order compatible with the rig structure.We adjust the construction of `well-adapted´ models of Synthetic Differential Geometry in order to build the first pre-cohesive toposes with a bi-directional R.We also show that, in one of these pre-cohesive variants, the pre-order on R, derived radically synthetically from bi-directionality, coincides with that defined in the original model.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Mount Allison University  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Synthetic Differential Geometry  
dc.subject
Axiomatic Cohesion  
dc.subject
Topos Theory  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Bi-directional models of 'radically synthetic' differential geometry  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-06-24T13:32:05Z  
dc.journal.volume
40  
dc.journal.number
15  
dc.journal.pagination
413-429  
dc.journal.pais
Canadá  
dc.description.fil
Fil: Menni, Matías. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Universidad Nacional de La Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.journal.title
Theory And Applications Of Categories  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2405.17748  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.48550/arXiv.2405.17748