Artículo
Separable MV-algebras and lattice-ordered groups
Fecha de publicación:
05/2024
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Algebra
ISSN:
0021-8693
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The theory of extensive categories determines in particular the notion of separable MV-algebra (equivalently, of separable unital lattice-ordered Abelian group). We establish the following structure theorem: An MV-algebra is separable if, and only if, it is a finite product of algebras of rational numbers—i.e., of subalgebras of the MV-algebra [0,1]∩Q" role="presentation">. Beyond its intrinsic algebraic interest, this research is motivated by the long-term programme of developing the algebraic geometry of the opposite of the category of MV-algebras, in analogy with the classical case of commutative K-algebras over a field K.
Palabras clave:
Extensive categories
,
MV-algebras
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Marra, Vincenzo; Menni, Matías; Separable MV-algebras and lattice-ordered groups; Academic Press Inc Elsevier Science; Journal of Algebra; 646; 5-2024; 66-99
Compartir
Altmétricas