Mostrar el registro sencillo del ítem

dc.contributor.author
Godoy, José Luis  
dc.contributor.author
González, Alejandro Hernán  
dc.contributor.author
Normey Rico, Julio  
dc.date.available
2017-09-07T20:57:52Z  
dc.date.issued
2016-06  
dc.identifier.citation
Godoy, José Luis; González, Alejandro Hernán; Normey Rico, Julio; Constrained Latent Variable Model Predictive Control for trajectory tracking and economic optimization in batch processes; Elsevier; Journal Of Process Control; 45; 6-2016; 1-11  
dc.identifier.issn
0959-1524  
dc.identifier.uri
http://hdl.handle.net/11336/23830  
dc.description.abstract
A constrained latent variable model predictive control (LV-MPC) technique is proposed for trajectory tracking and economic optimization in batch processes. The controller allows the incorporation of constraints on the process variables and is designed on the basis of multi-way principal component analysis (MPCA) of a batch data array rearranged by means of a regularized batch-wise unfolding. The main advantages of LV-MPC over other MPC techniques are: (i) requirements for the dataset are rather modest (only around 10-20 batch runs are necessary), (ii) nonlinear processes can efficiently be handled algebraically through MPCA models, and (iii) the tuning procedure is simple. The LV-MPC for tracking is tested through a benchmark process used in previous LV-MPC formulations. The extension to economic LV-MPC includes an economic cost and it is based on model and trajectory updating from batch to batch to drive the process to the economic optimal region. A data-driven model validity indicator is used to ensure the prediction?s validity while the economic cost drives the process to regions with higher profit. This technique is validated through simulations in a case study.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Multi-Way Principal Component Analysis  
dc.subject
Latent Variable Model  
dc.subject
Constrained Predictive Control  
dc.subject
Economic Cost Function  
dc.title
Constrained Latent Variable Model Predictive Control for trajectory tracking and economic optimization in batch processes  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-09-04T15:07:50Z  
dc.journal.volume
45  
dc.journal.pagination
1-11  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Godoy, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Normey Rico, Julio. Universidade Federal Da Santa Catarina; Brasil  
dc.journal.title
Journal Of Process Control  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jprocont.2016.06.005  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0959152416300713