Artículo
A Robust Proposal for Heteroscedastic Dose–Response Models with an Application to Interaction Analysis
Fecha de publicación:
04/2024
Editorial:
Amer Statistical Assoc & Int Biometric Soc
Revista:
Journal Of Agricultural Biological And Environmental Statistics
ISSN:
1085-7117
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This article proposes a robust approach to dose-response analysis with in homogeneous variance observations, as it often arises in practice in the disciplines of toxicology or pharmacology. The motivating problem is a real data set generated by an experimental study where the aim is to decide the nature of the interaction between two chemical agents, that is to say whether itis additive, synergistic or antagonistic. This data set presents non linearity, heteroscedasticity and presence of outliers: a very challenging scenario for the analyst. A class of robust estimators for heteroscedastic non-linear models with fixed design based on a two–step procedure is studied and their asymptotic distribution is derived under regularity assumptions. Robust confidence intervals of the parameters of interest are deduced from the asymptotic behavior, which we use to implement a robust version of the graphical tool called isobologram and the associated confidence regions. The robust estimators and their classical relatives are compared through a numerical experiment under different contamination schemes. An application of the methodology is illustrated through the agrochemical data.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Articulos de INSTITUTO DE CALCULO
Articulos(IQUIBICEN)
Articulos de INSTITUTO DE QUIMICA BIOLOGICA DE LA FACULTAD DE CS. EXACTAS Y NATURALES
Articulos de INSTITUTO DE QUIMICA BIOLOGICA DE LA FACULTAD DE CS. EXACTAS Y NATURALES
Citación
Bianco, Ana Maria; Chaufan, Gabriela; Coalova, Isis; Valdora, Marina Silvia; A Robust Proposal for Heteroscedastic Dose–Response Models with an Application to Interaction Analysis; Amer Statistical Assoc & Int Biometric Soc; Journal Of Agricultural Biological And Environmental Statistics; 4-2024; 1-23
Compartir
Altmétricas