Mostrar el registro sencillo del ítem

dc.contributor.author
Cerda, Jaime  
dc.contributor.author
Pautasso, Pedro Carlos  
dc.contributor.author
Cafaro, Diego Carlos  
dc.date.available
2017-09-07T20:17:14Z  
dc.date.issued
2016-04  
dc.identifier.citation
Cerda, Jaime; Pautasso, Pedro Carlos; Cafaro, Diego Carlos; Optimizing Gasoline Recipes and Blending Operations Using Nonlinear Blend Models; American Chemical Society; Industrial and Engineering Chemistry; 55; 28; 4-2016; 7782-7800  
dc.identifier.issn
0019-7866  
dc.identifier.uri
http://hdl.handle.net/11336/23813  
dc.description.abstract
Gasoline is one of the largest-volume products of the oil industry that yields 60%−70% of the total refinery revenues. This work presents a novel continuous-time mixed integer nonlinear programming (MINLP) formulation for the gasoline blend scheduling problem. It incorporates nonlinear blending correlations for an improved prediction of key blend properties, and nonlinear constraints for precisely tracking the inventory level in product tanks when multiple blenders are operated. The approach handles nonidentical blenders, multipurpose tanks, sequence-dependent changeovers, limited amounts of gasoline components, and multiperiod scenarios with component flow rates changing with the period. Operating rules for blenders and product/component tanks are also considered. A special model feature is the use of floating slots dynamically allocated to time periods while solving the problem. An approximate mixed-integer linear programming (MILP) formulation assuming ideal mixing provides a good initial point. By fixing the integer variables, the resulting nonlinear programming (NLP) is then solved to find a near-optimal MINLP solution. Alternatively, a MINLP solver can be directly applied to the original MINLP formulation. Eleven benchmark examples have been successfully solved using the two solution strategies at rather low computational cost.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Gasoline Blending  
dc.subject
Nonlinear Correlations  
dc.subject
Minlp Model  
dc.subject
Optimization  
dc.subject.classification
Otras Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Optimizing Gasoline Recipes and Blending Operations Using Nonlinear Blend Models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-09-01T18:23:57Z  
dc.journal.volume
55  
dc.journal.number
28  
dc.journal.pagination
7782-7800  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Pautasso, Pedro Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Cafaro, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.journal.title
Industrial and Engineering Chemistry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.iecr.6b01566  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/acs.iecr.6b01566