Mostrar el registro sencillo del ítem
dc.contributor.author
Cerda, Jaime
dc.contributor.author
Pautasso, Pedro Carlos
dc.contributor.author
Cafaro, Diego Carlos
dc.date.available
2017-09-07T20:17:14Z
dc.date.issued
2016-04
dc.identifier.citation
Cerda, Jaime; Pautasso, Pedro Carlos; Cafaro, Diego Carlos; Optimizing Gasoline Recipes and Blending Operations Using Nonlinear Blend Models; American Chemical Society; Industrial and Engineering Chemistry; 55; 28; 4-2016; 7782-7800
dc.identifier.issn
0019-7866
dc.identifier.uri
http://hdl.handle.net/11336/23813
dc.description.abstract
Gasoline is one of the largest-volume products of the oil industry that yields 60%−70% of the total refinery revenues. This work presents a novel continuous-time mixed integer nonlinear programming (MINLP) formulation for the gasoline blend scheduling problem. It incorporates nonlinear blending correlations for an improved prediction of key blend properties, and nonlinear constraints for precisely tracking the inventory level in product tanks when multiple blenders are operated. The approach handles nonidentical blenders, multipurpose tanks, sequence-dependent changeovers, limited amounts of gasoline components, and multiperiod scenarios with component flow rates changing with the period. Operating rules for blenders and product/component tanks are also considered. A special model feature is the use of floating slots dynamically allocated to time periods while solving the problem. An approximate mixed-integer linear programming (MILP) formulation assuming ideal mixing provides a good initial point. By fixing the integer variables, the resulting nonlinear programming (NLP) is then solved to find a near-optimal MINLP solution. Alternatively, a MINLP solver can be directly applied to the original MINLP formulation. Eleven benchmark examples have been successfully solved using the two solution strategies at rather low computational cost.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Gasoline Blending
dc.subject
Nonlinear Correlations
dc.subject
Minlp Model
dc.subject
Optimization
dc.subject.classification
Otras Ingeniería Química
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Optimizing Gasoline Recipes and Blending Operations Using Nonlinear Blend Models
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-09-01T18:23:57Z
dc.journal.volume
55
dc.journal.number
28
dc.journal.pagination
7782-7800
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Washington
dc.description.fil
Fil: Cerda, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
dc.description.fil
Fil: Pautasso, Pedro Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
dc.description.fil
Fil: Cafaro, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
dc.journal.title
Industrial and Engineering Chemistry
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.iecr.6b01566
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/acs.iecr.6b01566
Archivos asociados