Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Capítulo de Libro

Computational Approaches and Tools as Applied to the Study of Rhythms and Chaos in Biology

Título del libro: Computational Systems Biology in Medicine and Biotechnology

Flesia, Ana GeorginaIcon ; Nieto, Paula SofiaIcon ; Aon, Miguel A.; Kembro, Jackelyn MelissaIcon
Otros responsables: Cortassa, Sonia del CarmenIcon ; Aon, Miguel A.
Fecha de publicación: 2022
Editorial: Humana New York
ISSN: 1064-3745
e-ISSN: 1940-6029
ISBN: 978-1-0716-1830-1
Idioma: Inglés
Clasificación temática:
Biología

Resumen

The temporal dynamics in biological systems displays a wide range of behaviors, from periodic oscillations, as in rhythms, bursts, long-range (fractal) correlations, chaotic dynamics up to brown and white noise. Herein, we propose a comprehensive analytical strategy for identifying, representing, and analyzing biological time series, focusing on two strongly linked dynamics: periodic (oscillatory) rhythms and chaos. Understanding the underlying temporal dynamics of a system is of fundamental importance; however, it presents methodological challenges due to intrinsic characteristics, among them the presence of noise or trends, and distinct dynamics at different time scales given by molecular, dcellular, organ, and organism levels of organization. For example, in locomotion circadian and ultradian rhythms coexist with fractal dynamics at faster time scales. We propose and describe the use of a combined approach employing different analytical methodologies to synergize their strengths and mitigate their weaknesses. Specifically, we describe advantages and caveats to consider for applying probability distribution, autocorrelation analysis, phase space reconstruction, Lyapunov exponent estimation as well as different analyses such as harmonic, namely, power spectrum; continuous wavelet transforms; synchrosqueezing transform; and wavelet coherence. Computational harmonic analysis is proposed as an analytical framework for using different types of wavelet analyses. We show that when the correct wavelet analysis is applied, the complexity in the statistical properties, including temporal scales, present in time series of signals, can be unveiled and modeled. Our chapter showcase two specific examples where an in-depth analysis of rhythms and chaos is performed: (1) locomotor and food intake rhythms over a 42-day period of mice subjected to different feeding regimes; and (2) chaotic calcium dynamics in a computational model of mitochondrial function.
Palabras clave: BIOLOGICAL CLOCKS , CIRCADIAN AND ULTRADIAN RHYTHMS , SYNCHROSQUEEZING , WAVELET COHERENCE , POWER SPECTRUM ANALYSIS , PHASE SPACE RECONSTRUCTION , LYAPUNOV EXPONENT
Ver el registro completo
 
Archivos asociados
Tamaño: 17.98Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/237988
URL: https://link.springer.com/protocol/10.1007/978-1-0716-1831-8_13
DOI: http://dx.doi.org/10.1007/978-1-0716-1831-8_13
Colecciones
Capítulos de libros(IIBYT)
Capítulos de libros de INSTITUTO DE INVESTIGACIONES BIOLOGICAS Y TECNOLOGICAS
Citación
Flesia, Ana Georgina; Nieto, Paula Sofia; Aon, Miguel A.; Kembro, Jackelyn Melissa; Computational Approaches and Tools as Applied to the Study of Rhythms and Chaos in Biology; Humana New York; 2022; 277-342
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES