Mostrar el registro sencillo del ítem

dc.contributor.author
Federico, Maria Laura  
dc.contributor.author
Carrere Gómez, Manuela  
dc.contributor.author
Chakrabarty, Subhadra  
dc.contributor.author
Erazzú, Luis Ernesto  
dc.contributor.author
Snowdon, Rod  
dc.date.available
2024-06-12T12:22:07Z  
dc.date.issued
2021  
dc.identifier.citation
Prioritization of candidate genes in QTL regions associated with bioenergy-related traits in sorghum (Sorghum bicolor) using a machine learning algorithm; XVIII Latin American Congress of Genetics; LIV Annual Meeting of the Chilean Society of Genetics; XLIX Argentine Congress of Genetics; VIII Congress of the Uruguayan Society of Genetics; I Paraguayan Congress of Genetics; V Latin American Congress of Human Genetics; Valdivia; Chile; 2021; 231-231  
dc.identifier.issn
1852-6233  
dc.identifier.uri
http://hdl.handle.net/11336/237918  
dc.description.abstract
Gene prioritization pipelines are designed to rank positional candidate genes (CG) within quantitative trait loci (QTL) and reduce the list of CG that is selected for further in-depth functional analysis. We have designed an integrated approach to prioritize CG in sorghum (Sorghum bicolor) combining the use of high-resolution QTL mapping, a machine learning algorithm, sequence analysis of the parental genomes and CG expression profiling. First, we re-mapped QTL associated with 20 different bioenergy-related traits in a recombinant inbred line (RIL) population from a cross between grain (M71) and sweet sorghum (SS79), genotyped using an Affymetrix 90K sorghum single nucleotide polymorphism (SNP) array. Thirty-eight QTL for 16 traits were identified using composite interval mapping; reference genome coordinates were determined for each QTL confidence interval and lists of positional CG generated. Positional CG lists were ranked using a machine learning algorithm, QTG-Finder2. Genomes of the RIL parental lines were re-sequenced in an Illumina NovaSeq 6000 (S4 flow cell, 300 cycles, PE150). Sequencing reads were aligned to the sorghum reference genome, BTx623, and SNPs were called for the parental genotypes. SNP effects on parental allele function were assessed using SNPeff. We also evaluated the tissue-specificity of each of the top 20% CG ranked by QTG-Finder2. Lastly, we generated a prioritized list of positional CG for each of the 38 QTL based on QTG-Finder2 rank, SNP presence/effect between parental alleles and expression profile. Taken together, these results bring us a step closer to finding the causal genes behind these set of bioenergy-associated traits.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Sociedad Argentina de Genética  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
QTL  
dc.subject
SNP  
dc.subject
BIOENERGY  
dc.subject
CANDIDATE GENES  
dc.subject.classification
Biotecnología Agrícola y Biotecnología Alimentaria  
dc.subject.classification
Biotecnología Agropecuaria  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Prioritization of candidate genes in QTL regions associated with bioenergy-related traits in sorghum (Sorghum bicolor) using a machine learning algorithm  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2024-06-12T11:45:44Z  
dc.journal.volume
22  
dc.journal.number
1 (Suppl.)  
dc.journal.pagination
231-231  
dc.journal.pais
Argentina  
dc.journal.ciudad
Buenos Aires  
dc.description.fil
Fil: Federico, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; Argentina  
dc.description.fil
Fil: Carrere Gómez, Manuela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; Argentina  
dc.description.fil
Fil: Chakrabarty, Subhadra. Justus Liebig Universitat Giessen; Alemania  
dc.description.fil
Fil: Erazzú, Luis Ernesto. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Tucuman-Santiago del Estero. Estación Experimental Agropecuaria Famaillá; Argentina  
dc.description.fil
Fil: Snowdon, Rod. Justus Liebig Universitat Giessen; Alemania  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://sag.org.ar/jbag/en/project/vol-xxxii-suppl-1-2/  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Congreso  
dc.description.nombreEvento
XVIII Latin American Congress of Genetics; LIV Annual Meeting of the Chilean Society of Genetics; XLIX Argentine Congress of Genetics; VIII Congress of the Uruguayan Society of Genetics; I Paraguayan Congress of Genetics; V Latin American Congress of Human Genetics  
dc.date.evento
2021-10-05  
dc.description.ciudadEvento
Valdivia  
dc.description.paisEvento
Chile  
dc.type.publicacion
Journal  
dc.description.institucionOrganizadora
Sociedad Argentina de Genética  
dc.description.institucionOrganizadora
Sociedad de Genética de Chile  
dc.description.institucionOrganizadora
Sociedad Uruguaya de Genética  
dc.description.institucionOrganizadora
Asociación Latinoamericana de Genética  
dc.description.institucionOrganizadora
Sociedad Paraguaya de Genética  
dc.description.institucionOrganizadora
Red Latinoamericana de Genética Humana  
dc.source.revista
Journal of Basic & Applied Genetics  
dc.date.eventoHasta
2021-10-08  
dc.type
Congreso