Artículo
Highly deformable and highly fluid vesicles as potential drug delivery systems: theoretical and practical considerations
Fecha de publicación:
06/2013
Editorial:
Dove Press
Revista:
International Journal of Nanomedicine
ISSN:
1176-9114
e-ISSN:
1178-2013
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Vesicles that are specifically designed to overcome the stratum corneum barrier in intact skin provide an efficient transdermal (systemic or local) drug delivery system. They can be classified into two main groups according to the mechanisms underlying their skin interaction. The first group comprises those possessing highly deformable bilayers, achieved by incorporating edge activators to the bilayers or by mixing with certain hydrophilic solutes. The vesicles of this group act as drug carriers that penetrate across hydrophilic pathways of the intact skin. The second group comprises those possessing highly fluid bilayers, owing to the presence of permeation enhancers. The vesicles of this group can act as carriers of drugs that permeate the skin after the barrier of the stratum corneum is altered because of synergistic action with the permeation enhancers contained in the vesicle structure. We have included a detailed overview of the different mechanisms of skin interaction and discussed the most promising preclinical applications of the last five years of Transfersomes® (IDEA AG, Munich, Germany), ethosomes, and invasomes as carriers of antitumoral and anti-inflammatory drugs applied by the topical route.
Palabras clave:
Transfersomes
,
Ethosomes
,
Antitumoral
,
Anti-Inflammatory
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Romero, Eder Lilia; Morilla, María José; Highly deformable and highly fluid vesicles as potential drug delivery systems: theoretical and practical considerations; Dove Press; International Journal of Nanomedicine; 8; 1; 6-2013; 3171-3186
Compartir
Altmétricas