Mostrar el registro sencillo del ítem
dc.contributor.author
Fuciños, Clara
dc.contributor.author
Rodríguez Sanz, Andrea
dc.contributor.author
García Caamaño, Esther
dc.contributor.author
Gerbino, Oscar Esteban
dc.contributor.author
Torrado, Ana
dc.contributor.author
Gomez Zavaglia, Andrea
dc.contributor.author
Rúa, María L.
dc.date.available
2024-06-12T10:41:37Z
dc.date.issued
2023-10
dc.identifier.citation
Fuciños, Clara; Rodríguez Sanz, Andrea; García Caamaño, Esther; Gerbino, Oscar Esteban; Torrado, Ana; et al.; Microfluidics potential for developing food-grade microstructures through emulsification processes and their application; Elsevier Science; Food Research International; 172; 113086; 10-2023; 1-15
dc.identifier.issn
0963-9969
dc.identifier.uri
http://hdl.handle.net/11336/237877
dc.description.abstract
The food sector continues to face challenges in developing techniques to increase the bioavailability of bioactive chemicals. Utilising microstructures capable of encapsulating diverse compounds has been proposed as a technological solution for their transport both in food and into the gastrointestinal tract. The present review discusses the primary elements that influence the emulsification process in microfluidic systems to form different microstructures for food applications. In microfluidic systems, reactions occur within small reaction channels (1–1000 μm), using small amounts of samples and reactants, ca. 102–103 times less than conventional assays. This geometry provides several advantages for emulsion and encapsulating structure production, like less waste generation, lower cost and gentle assays. Also, from a food application perspective, it allows the decrease in particle dispersion, resulting in a highly repeatable and efficient synthesis method that also improves the palatability of the food products into which the encapsulates are incorporated. However, it also entails some particular requirements. It is important to obtain a low Reynolds number (Re < approx. 250) for greater precision in droplet formation. Also, microfluidics requires fluid viscosity typically between 0.3 and 1400 mPa s at 20 °C. So, it is a challenge to find food-grade fluids that can operate at the micro-scale of these systems. Microfluidic systems can be used to synthesise different food-grade microstructures: microemulsions, solid lipid microparticles, microgels, or self-assembled structures like liposomes, niosomes, or polymersomes. Besides, microfluidics is particularly useful for accurately encapsulating bacterial cells to control their delivery and release on the action site. However, despite the significant advancement in these systems´ development over the past several years, developing and implementing these systems on an industrial scale remains challenging for the food industry.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DISPERSION
dc.subject
EMULSION
dc.subject
ENCAPSULATION
dc.subject
LAB-ON-A-CHIP
dc.subject
LIPOSOME
dc.subject
MICROPARTICLE
dc.subject
NIOSOME
dc.subject
POLYMERSOME
dc.subject
PROBIOTIC
dc.subject
SELF-ASSEMBLY
dc.subject.classification
Alimentos y Bebidas
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Microfluidics potential for developing food-grade microstructures through emulsification processes and their application
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-05-07T13:31:05Z
dc.journal.volume
172
dc.journal.number
113086
dc.journal.pagination
1-15
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Fuciños, Clara. Universidad de Vigo; España
dc.description.fil
Fil: Rodríguez Sanz, Andrea. Universidad de Vigo; España
dc.description.fil
Fil: García Caamaño, Esther. Universidad de Vigo; España
dc.description.fil
Fil: Gerbino, Oscar Esteban. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina
dc.description.fil
Fil: Torrado, Ana. Universidad de Vigo; España
dc.description.fil
Fil: Gomez Zavaglia, Andrea. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina
dc.description.fil
Fil: Rúa, María L.. Universidad de Vigo; España
dc.journal.title
Food Research International
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.foodres.2023.113086
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://tinyurl.com/2anzob3v
Archivos asociados