Artículo
Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth
Fecha de publicación:
06/2024
Editorial:
American Institute of Mathematical Sciences
Revista:
Discrete And Continuous Dynamical Systems
ISSN:
1078-0947
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work we establish the optimal Lipschitz regularity for non-negative almost minimizers of the one-phase Bernoulli-type functional JG(u, Ω) := F Ω G(|∇u|) + χ{u>0} dx where Ω ⊂ R n is a bounded domain and G : [0, ∞) → [0, ∞) is a Young function with G′ = g satisfying the Lieberman’s classical conditions. Moreover, of independent mathematical interest, we also address a Höder regularity characterization via Campanato-type estimates in the context of Orlicz modulars, which is new for such a class of non-standard growth functionals.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMASL)
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Citación
Da Silva, Joao Vitor; Silva, Analia; Vivas, Hernán Agustín; Lipschitz regularity of almost minimizers in a Bernoulli problem with non-standard growth; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 44; 6; 6-2024; 1555-1586
Compartir
Altmétricas