Mostrar el registro sencillo del ítem
dc.contributor.author
Carcione, Jose M.
dc.contributor.author
Picotti, Stefano
dc.contributor.author
Santos, Juan Enrique
dc.date.available
2024-06-07T10:23:43Z
dc.date.issued
2012-11
dc.identifier.citation
Carcione, Jose M.; Picotti, Stefano; Santos, Juan Enrique; Numerical experiments of fracture-induced velocity and attenuation anisotropy; Wiley Blackwell Publishing, Inc; Geophysical Journal International; 191; 3; 11-2012; 1179-1191
dc.identifier.issn
0956-540X
dc.identifier.uri
http://hdl.handle.net/11336/237437
dc.description.abstract
Fractures are common in the Earth crust due to different factors, for instance, tectonic stresses and natural or artificial hydraulic fracturing caused by a pressurized fluid. A dense set of fractures behaves as an effective long-wavelength anisotropic medium, leading to azimuthally varying velocity and attenuation of seismic waves. Effective in this case means that the predominant wavelength is much longer than the fracture spacing. Here, fractures are represented by surface discontinuities in the displacement u and particle velocity v as [k ·u+e·v], where the brackets denote the discontinuity across the surface, k is a fracture stiffness and e is a fracture viscosity.We consider an isotropic background medium, where a set of fractures are embedded. There exists an analytical solution with five stiffness components for equispaced plane fractures and an homogeneous background medium. The theory predicts that the equivalent medium is transversely isotropic and viscoelastic (TIV). We then perform harmonic numerical experiments to compute the stiffness components as a function of frequency, by using a Galerkin finite-element procedure, and obtain the complex velocities of the medium as a function of frequency and propagation direction, which provide the phase velocities, energy velocities (wavefronts) and quality factors. The algorithm is tested with the analytical solution and then used to obtain the stiffness components for general heterogeneous cases, where fractal variations of the fracture compliances and background stiffnesses are considered.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Wiley Blackwell Publishing, Inc
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Fractures
dc.subject
Anisotropy
dc.subject.classification
Geociencias multidisciplinaria
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Numerical experiments of fracture-induced velocity and attenuation anisotropy
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-06-04T10:43:32Z
dc.journal.volume
191
dc.journal.number
3
dc.journal.pagination
1179-1191
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Carcione, Jose M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
dc.description.fil
Fil: Picotti, Stefano. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
dc.description.fil
Fil: Santos, Juan Enrique. Universidad Nacional de La Plata; Argentina. University Street; Estados Unidos. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Geophysical Journal International
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/gji/article/191/3/1179/559602
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/j.1365-246X.2012.05697.x
Archivos asociados