Artículo
Oscillators in a (2+1)-dimensional noncommutative space
Fecha de publicación:
03/2014
Editorial:
American Institute of Physics
Revista:
Journal of Mathematical Physics
ISSN:
0022-2488
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the Harmonic and Dirac Oscillator problem extended to a three-dimensional noncommutative space where the noncommutativity is induced by the shift of the dynamical variables with generators of SL(2,ℝ)SL(2,R) in a unitary irreducible representation considered in Falomir et al. [Phys. Rev. D 86, 105035 (2012)]. This redefinition is interpreted in the framework of the Levi's decomposition of the deformed algebra satisfied by the noncommutative variables. The Hilbert space gets the structure of a direct product with the representation space as a factor, where there exist operators which realize the algebra of Lorentz transformations. The spectrum of these models are considered in perturbation theory, both for small and large noncommutativity parameters, finding no constraints between coordinates and momenta noncommutativity parameters. Since the representation space of the unitary irreducible representations SL(2,ℝ)SL(2,R) can be realized in terms of spaces of square-integrable functions, we conclude that these models are equivalent to quantum mechanical models of particles living in a space with an additional compact dimension.
Palabras clave:
Noncommutative Space
,
Oscillator
,
Levi Decomposition
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Articulos de INST.DE FISICA LA PLATA
Citación
Vega, Federico Gaspar; Oscillators in a (2+1)-dimensional noncommutative space; American Institute of Physics; Journal of Mathematical Physics; 55; 3; 3-2014; 1-7
Compartir
Altmétricas