Artículo
Non-standard quantum algebras and finite dimensional PT -symmetric systems
Fecha de publicación:
01/2024
Editorial:
IOP Publishing
Revista:
Journal of Physics A: Mathematical and Theoretical
ISSN:
1751-8113
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work,PT-symmetric Hamiltonians defined on quantum sl(2, R) algebras are presented. We study the spectrum of a family of non-Hermitian Hamiltonians written in terms of the generators of the non-standard Uz(sl(2,R)) Hopf algebra deformation of sl(2, R). By making use of a particular boson representation of the generators of Uz(sl(2, R)), both the co-product and the commutation relations of the quantum algebra are shown to be invariant under the PT-transformation. In terms of these operators, we construct several finite dimensional PT-symmetry Hamiltonians, whose spectrum is analytically obtained for any arbitrary dimension. In particular, we show the appearance of Exceptional Points in the space of model parameters and we discuss the behaviour of the spectrum both in the exact PT-symmetry and the broken PT-symmetry dynamical phases. As an application, we show that this non-standard quantum algebra can be used to define an effective model Hamiltonian describing accurately the experimental spectra of three-electron hybrid qubits based on asymmetric double quantum dots. Remarkably enough, in this effective model, the deformation parameter "z" has to be identified with the detuning parameter of the system.
Palabras clave:
NON-STANDARD HOPF ALGEBRA
,
PT SYMMETRY
,
SPECTRUM
,
EXCEPTIONAL POINT
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Ballesteros, Ángel; Ramirez, Romina Andrea; Reboiro, Marta; Non-standard quantum algebras and finite dimensional PT -symmetric systems; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 57; 3; 1-2024; 1-21
Compartir
Altmétricas