Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Revolutionizing patient safety with artificial intelligence: The potential of natural language processing and large language models

Klang, Eyal; Garcia Elorrio, EzequielIcon ; Zimlichman, Eyal
Fecha de publicación: 07/2023
Editorial: Oxford University Press
Revista: International Journal for Quality in Health Care
e-ISSN: 1464-3677
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Salud

Resumen

Patient safety is a critical aspect of modern health care. Adverse events, half of them preventable, related to unsafe care are among the top ten causes of death and disability worldwide [1, 2]. Insecure care results in significant incremental expenses when, e.g. hospital-acquired infections, account for high rates of morbidity and mortality, as well as considerable costs [3]. Despite efforts to improve safety in the health-care system, issues still persist, and progress has been unsatisfactory over the last 30 years [4]. Artificial intelligence (AI) has the potential to address challenges in health care by providing solutions to predict and prevent harm [1]. In this editorial, we will discuss the potential of advanced AI, specifically natural language processing (NLP) and large language models (LLMs), to improve patient safety while also acknowledging the risks and challenges associated with their implementation...
Palabras clave: Humans , Artificial Intelligence , Natural Language Processing , Patient Safety , Language
Ver el registro completo
 
Archivos asociados
Tamaño: 237.7Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/237363
DOI: http://dx.doi.org/10.1093/intqhc/mzad049
URL: https://academic.oup.com/intqhc/article/35/3/mzad049/7221485
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Klang, Eyal; Garcia Elorrio, Ezequiel; Zimlichman, Eyal; Revolutionizing patient safety with artificial intelligence: The potential of natural language processing and large language models; Oxford University Press; International Journal for Quality in Health Care; 35; 3; 7-2023; 1-2
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES