Artículo
Null hypothesis test for anomaly detection
Fecha de publicación:
05/2023
Editorial:
Elsevier Science
Revista:
Physics Letters B
ISSN:
0370-2693
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We extend the use of Classification Without Labels for anomaly detection with a hypothesis test designed to exclude the background-only hypothesis. By testing for statistical independence of the two discriminating dataset regions, we are able to exclude the background-only hypothesis without relying on fixed anomaly score cuts or extrapolations of background estimates between regions. The method relies on the assumption of conditional independence of anomaly score features and dataset regions, which can be ensured using existing decorrelation techniques. As a benchmark example, we consider the LHC Olympics dataset where we show that mutual information represents a suitable test for statistical independence and our method exhibits excellent and robust performance at different signal fractions even in presence of realistic feature correlations.
Palabras clave:
LHC
,
ANOMALY DETECTION
,
CWOLA
,
UNSUPERVISED
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (ICIFI)
Articulos de INSTITUTO DE CIENCIAS FISICAS
Articulos de INSTITUTO DE CIENCIAS FISICAS
Citación
Kamenik, Jernej F.; Szewc, Manuel; Null hypothesis test for anomaly detection; Elsevier Science; Physics Letters B; 840; 5-2023; 1-8
Compartir
Altmétricas