Artículo
Socioeconomic Index for Income and Poverty Prediction: A Sufficient Dimension Reduction Approach
Duarte, Sabrina Lorena
; Forzani, Liliana Maria
; Llop Orzan, Pamela Nerina
; García Arancibia, Rodrigo
; Tomassi, Diego Rodolfo
Fecha de publicación:
05/2023
Editorial:
John Wiley & Sons
Revista:
Review of Income and Wealth
ISSN:
1475-4991
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The present paper introduces a novel method for the construction of Socioeconomic Status (SES) indices that are specic to a target variable of interest. It is based on the Sufficient Dimension Reduction (SDR) paradigm and uses a factorized model-based approach to simultaneously deal with predictor variables of mixed nature (i.e. quantitative, binary, and ordinal), which are usual in microeconomic data. These SES indices also identify relevant predictor variables using a two-step regularized matrix factorization approach. Using data from household surveys for Argentina (Encuesta Permanente de Hogares-EPH), the proposed method is compared with other existing dimension reduction algorithms such as standard Principal Component Analysis (PCA) and its version for mixed variables, regression on the full set of variables and Least Absolute Shrinkage and Selection Operator (LASSO) regression.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Duarte, Sabrina Lorena; Forzani, Liliana Maria; Llop Orzan, Pamela Nerina; García Arancibia, Rodrigo; Tomassi, Diego Rodolfo; Socioeconomic Index for Income and Poverty Prediction: A Sufficient Dimension Reduction Approach; John Wiley & Sons; Review of Income and Wealth; 69; 2; 5-2023; 318-346
Compartir
Altmétricas