Mostrar el registro sencillo del ítem
dc.contributor.author
Zunino, Luciano José
dc.contributor.author
Tabak, Benjamin M.
dc.contributor.author
Serinaldi, Francesco
dc.contributor.author
Zanin, Massimiliano
dc.contributor.author
Pérez, Darío Gabriel
dc.contributor.author
Rosso, Osvaldo Aníbal
dc.date.available
2024-05-31T10:48:11Z
dc.date.issued
2011-03
dc.identifier.citation
Zunino, Luciano José; Tabak, Benjamin M.; Serinaldi, Francesco; Zanin, Massimiliano ; Pérez, Darío Gabriel; et al.; Commodity predictability analysis with a permutation information theory approach; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 390; 5; 3-2011; 876-890
dc.identifier.issn
0378-4371
dc.identifier.uri
http://hdl.handle.net/11336/236639
dc.description.abstract
It is widely known that commodity markets are not totally efficient. Long-range dependence is present, and thus the celebrated Brownian motion of prices can be considered only as a first approximation. In this work we analyzed the predictability in commodity markets by using a novel approach derived from Information Theory. The complexity-entropy causality plane has been recently shown to be a useful statistical tool to distinguish the stage of stock market development because differences between emergent and developed stock markets can be easily discriminated and visualized with this representation space [L. Zunino, M. Zanin, B.M. Tabak, D.G. Pérez, O.A. Rosso, Complexity-entropy causality plane: a useful approach to quantify the stock market inefficiency, Physica A 389 (2010) 1891-1901]. By estimating the permutation entropy and permutation statistical complexity of twenty basic commodity future markets over a period of around 20 years (1991.01.02-2009.09.01), we can define an associated ranking of efficiency. This ranking is quantifying the presence of patterns and hidden structures in these prime markets. Moreover, the temporal evolution of the commodities in the complexity-entropy causality plane allows us to identify periods of time where the underlying dynamics is more or less predictable.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
COMMODITY EFFICIENCY
dc.subject
COMPLEXITY-ENTROPY CAUSALITY PLANE
dc.subject
PERMUTATION ENTROPY
dc.subject
PERMUTATION STATISTICAL COMPLEXITY
dc.subject
BANDT AND POMPE METHOD
dc.subject
ORDINAL TIME SERIES ANALYSIS
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Commodity predictability analysis with a permutation information theory approach
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-05-31T10:00:00Z
dc.journal.volume
390
dc.journal.number
5
dc.journal.pagination
876-890
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Zunino, Luciano José. Consejo Superior de Investigaciones Científicas; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Departamento de Ciencias Básicas; Argentina
dc.description.fil
Fil: Tabak, Benjamin M.. Universidade Catolica de Brasilia; Brasil
dc.description.fil
Fil: Serinaldi, Francesco. Università degli Studi della Tuscia; Italia
dc.description.fil
Fil: Zanin, Massimiliano. Universidad Autónoma de Madrid; España
dc.description.fil
Fil: Pérez, Darío Gabriel. Pontificia Universidad Católica de Valparaíso; Chile
dc.description.fil
Fil: Rosso, Osvaldo Aníbal. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Physica A: Statistical Mechanics and its Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437110009842
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.physa.2010.11.020
Archivos asociados