Mostrar el registro sencillo del ítem

dc.contributor.author
Salve, Diego Antonio  
dc.contributor.author
Maydup, Maria Luján  
dc.contributor.author
Salazar, Germán Ariel  
dc.contributor.author
Tambussi, Eduardo Alberto  
dc.contributor.author
Antonietta, Mariana  
dc.date.available
2024-05-31T10:11:00Z  
dc.date.issued
2023-11  
dc.identifier.citation
Salve, Diego Antonio; Maydup, Maria Luján; Salazar, Germán Ariel; Tambussi, Eduardo Alberto; Antonietta, Mariana; Canopy development, leaf traits and yield in high-altitude Andean maize under contrasting plant densities in Argentina; Cambridge University Press; Experimental Agriculture; 59; 2-3; 11-2023; 1-18  
dc.identifier.issn
0014-4797  
dc.identifier.uri
http://hdl.handle.net/11336/236627  
dc.description.abstract
In highlands, the increase in altitude results in a drastic decrease in temperature (T) that delays phenological development of maize, decreasing light interception during the cycle. This could be partially overcome by increasing plant density, but information is scarce for designing specific management options. The objective of this work was to describe changes in canopy development, photosynthetic performance, biomass and yield of maize grown at contrasting plant densities (5.7 plants m−2 , locally used, and 8.7 plants m−2 , 50% higher). Three experiments were carried out in two high-altitude environments within the Argentinean Andean region, Hornillos (HOR, 2380 masl, 2019–20 and 2020–21) and El Rosal (ERO, 3350 masl, 2019–20), and complementary data were obtained from samplings in 8 farmer’s fields (from 2400 to 3400 masl, 2022–23). In the experiments, mean T during the first 150 days of the cycle was 33% lower at ERO, which implied 39 extra days but 25% shorter thermal time to achieve silking. The higher plant density significantly increased leaf area index and light interception at ERO, whereas at HOR, this was only evident during the second season. At the leaf level, plants grown at ERO had thicker leaves with higher chlorophyll ( 36%) and nitrogen (40%) content. Photosynthetic electron transport rate at full irradiance was 20% higher at ERO but significantly varied throughout the day with lowest values in the morning, which was not observed at HOR and was not related to light intensity or stomatal conductance. At HOR, the increase in plant density did not improve light interception, nor yield in 2019–20 (with average yields of 6356 kg ha−1 ) but it did improve both in 2020–21 when generally lower yields were attained (4821 kg ha−1 ). Across farmer’s fields, increasing densities consistently reduced yield per plant (r 2 = 0.57***) but improved yield per area basis, which was maximised at 10 pl m−2 as a result of a steady increase in kernel number m−2 (up to 15 pl m−2 ). Thus, in these high-altitude environments, increasing plant density beyond recommended (6 pl m−2 ) is a promising approach for improving yield, with major penalties of supra-optimum densities being related to kernel weight. Further work is needed to explore the effect of different factors limiting kernel growth, over plant density responses.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Cambridge University Press  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Zea mays  
dc.subject
highlands  
dc.subject
kernel number  
dc.subject
kernel weight  
dc.subject
biomass  
dc.subject.classification
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Canopy development, leaf traits and yield in high-altitude Andean maize under contrasting plant densities in Argentina  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-04-15T15:24:17Z  
dc.identifier.eissn
1469-4441  
dc.journal.volume
59  
dc.journal.number
2-3  
dc.journal.pagination
1-18  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Salve, Diego Antonio. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigacion y Desarrollo Tecnologico Para la Agricultura Familiar. Instituto de Investigacion y Desarrollo Tecnologico Para la Agricultura Familiar Region Noa.; Argentina  
dc.description.fil
Fil: Maydup, Maria Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; Argentina  
dc.description.fil
Fil: Salazar, Germán Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentina  
dc.description.fil
Fil: Tambussi, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; Argentina  
dc.description.fil
Fil: Antonietta, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; Argentina  
dc.journal.title
Experimental Agriculture  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/product/identifier/S0014479723000194/type/journal_article  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1017/S0014479723000194