Mostrar el registro sencillo del ítem
dc.contributor.author
Salve, Diego Antonio
dc.contributor.author
Maydup, Maria Luján
dc.contributor.author
Salazar, Germán Ariel
dc.contributor.author
Tambussi, Eduardo Alberto
dc.contributor.author
Antonietta, Mariana
dc.date.available
2024-05-31T10:11:00Z
dc.date.issued
2023-11
dc.identifier.citation
Salve, Diego Antonio; Maydup, Maria Luján; Salazar, Germán Ariel; Tambussi, Eduardo Alberto; Antonietta, Mariana; Canopy development, leaf traits and yield in high-altitude Andean maize under contrasting plant densities in Argentina; Cambridge University Press; Experimental Agriculture; 59; 2-3; 11-2023; 1-18
dc.identifier.issn
0014-4797
dc.identifier.uri
http://hdl.handle.net/11336/236627
dc.description.abstract
In highlands, the increase in altitude results in a drastic decrease in temperature (T) that delays phenological development of maize, decreasing light interception during the cycle. This could be partially overcome by increasing plant density, but information is scarce for designing specific management options. The objective of this work was to describe changes in canopy development, photosynthetic performance, biomass and yield of maize grown at contrasting plant densities (5.7 plants m−2 , locally used, and 8.7 plants m−2 , 50% higher). Three experiments were carried out in two high-altitude environments within the Argentinean Andean region, Hornillos (HOR, 2380 masl, 2019–20 and 2020–21) and El Rosal (ERO, 3350 masl, 2019–20), and complementary data were obtained from samplings in 8 farmer’s fields (from 2400 to 3400 masl, 2022–23). In the experiments, mean T during the first 150 days of the cycle was 33% lower at ERO, which implied 39 extra days but 25% shorter thermal time to achieve silking. The higher plant density significantly increased leaf area index and light interception at ERO, whereas at HOR, this was only evident during the second season. At the leaf level, plants grown at ERO had thicker leaves with higher chlorophyll ( 36%) and nitrogen (40%) content. Photosynthetic electron transport rate at full irradiance was 20% higher at ERO but significantly varied throughout the day with lowest values in the morning, which was not observed at HOR and was not related to light intensity or stomatal conductance. At HOR, the increase in plant density did not improve light interception, nor yield in 2019–20 (with average yields of 6356 kg ha−1 ) but it did improve both in 2020–21 when generally lower yields were attained (4821 kg ha−1 ). Across farmer’s fields, increasing densities consistently reduced yield per plant (r 2 = 0.57***) but improved yield per area basis, which was maximised at 10 pl m−2 as a result of a steady increase in kernel number m−2 (up to 15 pl m−2 ). Thus, in these high-altitude environments, increasing plant density beyond recommended (6 pl m−2 ) is a promising approach for improving yield, with major penalties of supra-optimum densities being related to kernel weight. Further work is needed to explore the effect of different factors limiting kernel growth, over plant density responses.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Cambridge University Press
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Zea mays
dc.subject
highlands
dc.subject
kernel number
dc.subject
kernel weight
dc.subject
biomass
dc.subject.classification
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Canopy development, leaf traits and yield in high-altitude Andean maize under contrasting plant densities in Argentina
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-04-15T15:24:17Z
dc.identifier.eissn
1469-4441
dc.journal.volume
59
dc.journal.number
2-3
dc.journal.pagination
1-18
dc.journal.pais
Reino Unido
dc.description.fil
Fil: Salve, Diego Antonio. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigacion y Desarrollo Tecnologico Para la Agricultura Familiar. Instituto de Investigacion y Desarrollo Tecnologico Para la Agricultura Familiar Region Noa.; Argentina
dc.description.fil
Fil: Maydup, Maria Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; Argentina
dc.description.fil
Fil: Salazar, Germán Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentina
dc.description.fil
Fil: Tambussi, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; Argentina
dc.description.fil
Fil: Antonietta, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; Argentina
dc.journal.title
Experimental Agriculture
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/product/identifier/S0014479723000194/type/journal_article
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1017/S0014479723000194
Archivos asociados