Mostrar el registro sencillo del ítem
dc.contributor.author
Veas Castillo, Luis
dc.contributor.author
Ovando Leon, Juan
dc.contributor.author
Bonacic, Carolina
dc.contributor.author
Gil Costa, Graciela Verónica
dc.contributor.author
Marín, Mauricio
dc.date.available
2024-05-27T12:43:36Z
dc.date.issued
2024-04
dc.identifier.citation
Veas Castillo, Luis; Ovando Leon, Juan; Bonacic, Carolina; Gil Costa, Graciela Verónica; Marín, Mauricio; A methodology for performance estimation of bot-based applications for natural disasters; Elsevier Science; Simulation Modelling Practice and Theory; 134; 4-2024; 1-25
dc.identifier.issn
1569-190X
dc.identifier.uri
http://hdl.handle.net/11336/236054
dc.description.abstract
Natural disasters drastically impact the society, causing emotional disorders as well as serious accidents that can lead to death. These kinds of disasters cause serious damage in computer and communications systems, due to the complete or partial destruction of the infrastructure, causing software applications that actually run on those infrastructures to crash. Additionally, these software applications have to provide a stable service to a large number of users and support unpredictable peaks of workloads. In this work, we propose a methodology to predict the performance of software applications designed for emergency situations when a natural disaster strikes. The applications are deployed on a distributed platform formed of commodity hardware usually available from universities, using container technology and container orchestration. We also present a specification language to formalize the definition and interaction between the components, services and the computing resources used to deploy the applications. Our proposal allows to predict computing performance based on the modeling and simulation of the different components deployed on a distributed computing platform combined with machine learning techniques. We evaluate our proposal under different scenarios, and we compare the results obtained by our proposal and by actual implementations of two applications deployed in a distributed computing infrastructure. Results show that our proposal can predict the performance of the applications with an error between 2% and 7%.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Evacuaciones
dc.subject
Simulacion
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A methodology for performance estimation of bot-based applications for natural disasters
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-05-27T10:59:49Z
dc.journal.volume
134
dc.journal.pagination
1-25
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Veas Castillo, Luis. Universidad Austral de Chile; Chile
dc.description.fil
Fil: Ovando Leon, Juan. Universidad de Santiago de Chile; Chile
dc.description.fil
Fil: Bonacic, Carolina. Universidad de Santiago de Chile; Chile
dc.description.fil
Fil: Gil Costa, Graciela Verónica. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina
dc.description.fil
Fil: Marín, Mauricio. Universidad de Santiago de Chile; Chile
dc.journal.title
Simulation Modelling Practice and Theory
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.simpat.2024.102931
Archivos asociados