Mostrar el registro sencillo del ítem
dc.contributor.author
Costanza, María Belén

dc.contributor.author
Scoccola, Claudia Graciela

dc.contributor.author
Zaldarriaga, Matías
dc.date.available
2024-05-27T11:55:06Z
dc.date.issued
2024-04
dc.identifier.citation
Costanza, María Belén; Scoccola, Claudia Graciela; Zaldarriaga, Matías; Enhancing CMB map reconstruction and power spectrum estimation with convolutional neural networks; IOP Publishing; Journal of Cosmology and Astroparticle Physics; 2024; 4; 4-2024; 1-34
dc.identifier.issn
1475-7516
dc.identifier.uri
http://hdl.handle.net/11336/236023
dc.description.abstract
The accurate reconstruction of Cosmic Microwave Background (CMB) maps and the measurement of its power spectrum are crucial for studying the early universe. In this paper, we implement a convolutional neural network to apply the Wiener Filter to CMB temperature maps, and use it intensively to compute an optimal quadratic estimation of the power spectrum. Our neural network has a UNet architecture as that implemented in WienerNet, but with novel aspects such as being written in PYTHON 3 and TENSORFLOW 2. It also includes an extra channel for the noise variance map, to account for inhomogeneous noise, and a channel for the mask. The network is very efficient, overcoming the bottleneck that is typically found in standard methods to compute the Wiener Filter, such as those that apply the conjugate gradient. It scales efficiently with the size of the map, making it a useful tool to include in CMB data analysis. The accuracy of the Wiener Filter reconstruction is satisfactory, as compared with the standard method. We heavily use this approach to efficiently estimate the power spectrum, by performing a simulation-based analysis of the optimal quadratic estimator. We further evaluate the quality of the reconstructed maps in terms of the power spectrum and find that we can properly recover the statistical properties of the signal. We find that the proposed architecture can account for inhomogeneous noise efficiently. Furthermore, increasing the complexity of the variance map presents a more significant challenge for the convergence of the network than the noise level does.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IOP Publishing

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CMBR experiments
dc.subject
Machine learning
dc.subject
Astrophysics - Cosmology and Nongalactic Astrophysics
dc.subject.classification
Astronomía

dc.subject.classification
Ciencias Físicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Enhancing CMB map reconstruction and power spectrum estimation with convolutional neural networks
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-05-27T10:56:02Z
dc.journal.volume
2024
dc.journal.number
4
dc.journal.pagination
1-34
dc.journal.pais
Reino Unido

dc.journal.ciudad
Londres
dc.description.fil
Fil: Costanza, María Belén. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
dc.description.fil
Fil: Scoccola, Claudia Graciela. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
dc.description.fil
Fil: Zaldarriaga, Matías. Institute for Advanced Study; Estados Unidos
dc.journal.title
Journal of Cosmology and Astroparticle Physics

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1475-7516/2024/04/041
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1475-7516/2024/04/041
Archivos asociados