Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

An Hybrid CPU-GPU Parallel Multi-tracking Framework for Long-Term Video Sequences

D'amato, Juan PabloIcon ; Dominguez, Leonardo DanielIcon ; Stramana, Franco Andrés; Rubiales, Aldo JoseIcon ; Pérez, Alejandro
Colaboradores: Figueroa García, Juan Carlos; Díaz Gutiérrez, Yesid; Gaona García, Elvis Eduardo; Orjuela Cañón, Álvaro David
Tipo del evento: Workshop
Nombre del evento: 8th Workshop on Engineering Applications
Fecha del evento: 06/10/2021
Institución Organizadora: Universidad Distrital Francisco José de Caldas; Universidad Santo Tomás;
Título del Libro: Applied Computer Sciences in Engineering
Editorial: Springer
ISSN: 1865-0929
e-ISSN: 1865-0937
ISBN: 978-3-030-86701-0
Idioma: Inglés
Clasificación temática:
Ciencias de la Computación

Resumen

The automatic evaluation of video content is today one of the biggest challenges in computer Vision. When the purpose is to work with static surveillance cameras, where most of the time the scenes do not change ,a full Convolutional Network (CNN) approach seems to require too much CPU effort, specially when the objects are slightly moving between different frames. On the other side, visual tracking has seen great recent advances in either speed or accuracy but still remain scarce when have to deal with long videos where objects constantly new ones come into the scene and others disappear. In this paper, we present a parallelization scheme to handle multiple instances of object tracking. The main purpose is reduce overall processing time . The idea is to use already pre-trained CNNs for discovering objects and a parallel multi-tracker for following them, using both CPU and GPU devices. Our multi-tracker framework consists of three main components, a movement detector, an object classification and a tracker. We use the object detector as an initialization for trackers. When there are plenty of objects in the scene, the other two components are incorporated for reducing CPU effort. The first one is a scheduler than prioritizes tracking those objects that seems more relevant than the others. This scheduler use a criteria that balances the multi-tasking trying to reach the greatest speed-up with minimal detections lost. The second one, is a GPU memory handler, that lets adapt the framework to different hardware configuration specially when the CNNs could not be completely allocated into the device. As a general framework, it is very flexible and it could be customized with different trackers and CNN, adapting to different situations and platforms. We evaluate this framework in different cases and cameras configurations, reaching reasonable speed-up and confidence.
Palabras clave: VIDEO PROCESSING , GPGPU , OBJECT TRACKING , CNN
Ver el registro completo
 
Archivos asociados
Tamaño: 1.506Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/235941
URL: https://link.springer.com/chapter/10.1007/978-3-030-86702-7_23
DOI: http://dx.doi.org/10.1007/978-3-030-86702-7_23
Colecciones
Eventos(CCT - TANDIL)
Eventos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
An Hybrid CPU-GPU Parallel Multi-tracking Framework for Long-Term Video Sequences; 8th Workshop on Engineering Applications; Medellín; Colombia; 2021; 263-274
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES