Mostrar el registro sencillo del ítem

dc.contributor.author
Flórez, Edison  
dc.contributor.author
Zapata Escobar, Andy Danian  
dc.contributor.author
Ferraro, Franklin  
dc.contributor.author
Ibargüen Becerra, César  
dc.contributor.author
Chamorro, Yuly  
dc.contributor.author
Maldonado, Alejandro Fabián  
dc.date.available
2024-05-23T14:12:05Z  
dc.date.issued
2023-10  
dc.identifier.citation
Flórez, Edison; Zapata Escobar, Andy Danian; Ferraro, Franklin; Ibargüen Becerra, César; Chamorro, Yuly; et al.; Coordination of Mercury(II) in Water Promoted over Hydrolysis in Solvated Clusters [Hg(H2O)1-6](aq)2+: Insights from Relativistic Effects and Free Energy Analysis; American Chemical Society; Journal of Physical Chemistry A; 127; 39; 10-2023; 8032-8049  
dc.identifier.issn
1089-5639  
dc.identifier.uri
http://hdl.handle.net/11336/235899  
dc.description.abstract
Understanding the nature of the interaction between mercury(II) ions, Hg2+, and water molecules is crucial to describe the stability and chemical behavior of structures formed during solvation, as well as the conditions that favor the Hg2+ coordination or inducing water hydrolysis. In our study, we explored exhaustively the potential energy surface of Hg2+ with up to six water molecules. We analyzed electronic and Gibbs free energies, binding, and nuclear magnetic resonance parameters. We used the zeroth-order regular approximation Hamiltonian, including scalar and spin-orbit relativistic corrections for free energy calculations and geometry optimizations to explore the interplay between electron correlation and relativistic effects. We analyzed intermolecular interactions with energy decomposition analysis, quantum theory of atoms in molecules, and natural bond orbital. Additionally, we used the four-component Dirac Hamiltonian to compute solvent effect on the magnetic shielding and J-coupling constants. Our results revealed that the water hydrolysis by Hg2+ requires a minimum of three water molecules. We found that the interaction between Hg2+ and water molecules is an orbital interaction due to relativistic effects and the most stable structures are opened-shape clusters, reducing the number of oxygen-mercury contacts and maximizing the formation of hydrogen bonds among water molecules. In these types of clusters, Hg2+ promotes the water hydrolysis over coordination with oxygen atoms. However, when we considered the change associated with the transfer of a cluster from the ideal gas to a solvated system, our solvation free energy analysis revealed that closed-shape clusters are more favorable, maximizing the number of oxygen-mercury contacts and reducing the formation of hydrogen bonds among water molecules. This finding suggests that, under room conditions, the coordination of Hg2+ is more favorable than hydrolysis. Our results have significant implications for understanding Hg2+ behavior in water, helping to develop targeted strategies for mercury remediation and management, and contributing to advancements in the broader field of environmental chemistry.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Water  
dc.subject
Mercury  
dc.subject
Gibbs  
dc.subject
Energy  
dc.subject.classification
Física Atómica, Molecular y Química  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Coordination of Mercury(II) in Water Promoted over Hydrolysis in Solvated Clusters [Hg(H2O)1-6](aq)2+: Insights from Relativistic Effects and Free Energy Analysis  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-04-23T13:40:36Z  
dc.identifier.eissn
1520-5215  
dc.journal.volume
127  
dc.journal.number
39  
dc.journal.pagination
8032-8049  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Flórez, Edison. Massey University; Nueva Zelanda  
dc.description.fil
Fil: Zapata Escobar, Andy Danian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina. Northeastern University; Estados Unidos  
dc.description.fil
Fil: Ferraro, Franklin. Universidad Católica Luis Amigó; Colombia  
dc.description.fil
Fil: Ibargüen Becerra, César. Institución Universitaria Colegio Mayor de Antioquia; Colombia. Universidad de Antioquia; Colombia  
dc.description.fil
Fil: Chamorro, Yuly. University of Groningen; Países Bajos  
dc.description.fil
Fil: Maldonado, Alejandro Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina  
dc.journal.title
Journal of Physical Chemistry A  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jpca.3c02927  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpca.3c02927