Mostrar el registro sencillo del ítem
dc.contributor.author
Flórez, Edison
dc.contributor.author
Zapata Escobar, Andy Danian
dc.contributor.author
Ferraro, Franklin
dc.contributor.author
Ibargüen Becerra, César
dc.contributor.author
Chamorro, Yuly
dc.contributor.author
Maldonado, Alejandro Fabián
dc.date.available
2024-05-23T14:12:05Z
dc.date.issued
2023-10
dc.identifier.citation
Flórez, Edison; Zapata Escobar, Andy Danian; Ferraro, Franklin; Ibargüen Becerra, César; Chamorro, Yuly; et al.; Coordination of Mercury(II) in Water Promoted over Hydrolysis in Solvated Clusters [Hg(H2O)1-6](aq)2+: Insights from Relativistic Effects and Free Energy Analysis; American Chemical Society; Journal of Physical Chemistry A; 127; 39; 10-2023; 8032-8049
dc.identifier.issn
1089-5639
dc.identifier.uri
http://hdl.handle.net/11336/235899
dc.description.abstract
Understanding the nature of the interaction between mercury(II) ions, Hg2+, and water molecules is crucial to describe the stability and chemical behavior of structures formed during solvation, as well as the conditions that favor the Hg2+ coordination or inducing water hydrolysis. In our study, we explored exhaustively the potential energy surface of Hg2+ with up to six water molecules. We analyzed electronic and Gibbs free energies, binding, and nuclear magnetic resonance parameters. We used the zeroth-order regular approximation Hamiltonian, including scalar and spin-orbit relativistic corrections for free energy calculations and geometry optimizations to explore the interplay between electron correlation and relativistic effects. We analyzed intermolecular interactions with energy decomposition analysis, quantum theory of atoms in molecules, and natural bond orbital. Additionally, we used the four-component Dirac Hamiltonian to compute solvent effect on the magnetic shielding and J-coupling constants. Our results revealed that the water hydrolysis by Hg2+ requires a minimum of three water molecules. We found that the interaction between Hg2+ and water molecules is an orbital interaction due to relativistic effects and the most stable structures are opened-shape clusters, reducing the number of oxygen-mercury contacts and maximizing the formation of hydrogen bonds among water molecules. In these types of clusters, Hg2+ promotes the water hydrolysis over coordination with oxygen atoms. However, when we considered the change associated with the transfer of a cluster from the ideal gas to a solvated system, our solvation free energy analysis revealed that closed-shape clusters are more favorable, maximizing the number of oxygen-mercury contacts and reducing the formation of hydrogen bonds among water molecules. This finding suggests that, under room conditions, the coordination of Hg2+ is more favorable than hydrolysis. Our results have significant implications for understanding Hg2+ behavior in water, helping to develop targeted strategies for mercury remediation and management, and contributing to advancements in the broader field of environmental chemistry.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Water
dc.subject
Mercury
dc.subject
Gibbs
dc.subject
Energy
dc.subject.classification
Física Atómica, Molecular y Química
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Coordination of Mercury(II) in Water Promoted over Hydrolysis in Solvated Clusters [Hg(H2O)1-6](aq)2+: Insights from Relativistic Effects and Free Energy Analysis
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-04-23T13:40:36Z
dc.identifier.eissn
1520-5215
dc.journal.volume
127
dc.journal.number
39
dc.journal.pagination
8032-8049
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Nueva York
dc.description.fil
Fil: Flórez, Edison. Massey University; Nueva Zelanda
dc.description.fil
Fil: Zapata Escobar, Andy Danian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina. Northeastern University; Estados Unidos
dc.description.fil
Fil: Ferraro, Franklin. Universidad Católica Luis Amigó; Colombia
dc.description.fil
Fil: Ibargüen Becerra, César. Institución Universitaria Colegio Mayor de Antioquia; Colombia. Universidad de Antioquia; Colombia
dc.description.fil
Fil: Chamorro, Yuly. University of Groningen; Países Bajos
dc.description.fil
Fil: Maldonado, Alejandro Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
dc.journal.title
Journal of Physical Chemistry A
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jpca.3c02927
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpca.3c02927
Archivos asociados