Mostrar el registro sencillo del ítem

dc.contributor.author
Ale, Elisa Carmen  
dc.contributor.author
Puntillo, Melisa Anahí  
dc.contributor.author
Rojas, María Florencia  
dc.contributor.author
Binetti, Ana Griselda  
dc.contributor.other
Gupta, Vijai Kumar  
dc.contributor.other
Sarker, Satyajit D.  
dc.contributor.other
Sharma, Minaxi  
dc.contributor.other
Pirovani, Maria Elida  
dc.contributor.other
Usmani, Zeba  
dc.contributor.other
Jayabaskaran, Chelliah  
dc.date.available
2024-05-22T15:12:12Z  
dc.date.issued
2022  
dc.identifier.citation
Ale, Elisa Carmen; Puntillo, Melisa Anahí; Rojas, María Florencia; Binetti, Ana Griselda; EPS from Lactobacilli and Bifidobacteria: Microbial metabolites with both technological and health-promoting properties; Wiley; 2022; 433-457  
dc.identifier.isbn
978-1-119-76957-6  
dc.identifier.uri
http://hdl.handle.net/11336/235871  
dc.description.abstract
Exopolysaccharides are complex carbohydrates commonly produced by lactic acid bacteria (LAB) and bifidobacteria, which can be released to the medium (EPS) or remained attached to the cell surface (capsular polysaccharide or CPS) (Castro-Bravo et al. 2018b). Although their natural role has not been fully understood yet, it is believed that they may play a beneficial role for the producing bacteria by acting as a physical barrier under stressing environmental conditions, participating in cell interactions, and modifying different ecological niches (Castro-Bravo et al. 2018a). On the other hand, the benefits EPS exert on the host have been widely studied. They proved to have immunomodulatory effects (Ale et al. 2016a; Liu et al. 2017a), regulate the gut microbiota (Bengoa et al. 2020; Yan et al. 2020), protect the host against pathogenic microorganisms (Ale et al. 2016a; Paik et al. 2018), present antioxidant properties (Zhang et al. 2013; Xu et al. 2021), cholesterol-lowering effects (Korcz et al. 2018), and anti-cancer activity in vitro (Xiao et al. 2020a), among others. Moreover, some EPS present interesting rheological properties due to their thickening effects and water-holding capacity within different food matrices (cheese, yogurt, bread, etc.), when produced in situ (Tang et al. 2018; Yilmaz et al. 2015) or added as a food ingredient (Ale et al. 2016b). This last strategy is the least applied by the food industry since the EPS yields obtained from both lactobacilli and bifidobacteria are low in comparison with bacteria of other genera, and the costs of extraction/purification processes are generally high. A summary of the technological and health promoting effects attributed to EPS up to date is shown in Figure 1. It is important to highlight that all these properties strongly depend on the chemical nature of EPS, as it will determine not only their behavior in the host (Castro-Bravo et al. 2018b), but also in different food matrices (Zhou et al. 2019).Considering this double techno-functional role, these polymers have been of great interest to the food industry. In the light of these potential applications of EPS and their producing bacteria, the present chapter intends to summarize the most recent information regarding the functional, technological, and chemical properties of EPS from bifidobacteria and lactobacilli, with the aim of providing scientific evidence that supports their application, highlighting the importance of deepening the current knowledge about these interesting molecules.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
EXOPOLYSACCHARIDES  
dc.subject
LACTOBACILLI  
dc.subject
BIFIDOBACTERIA  
dc.subject
TECHNOLOGICAL PROPERTIES  
dc.subject
HEALTH- PROMOTING PROPERTIES  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
EPS from Lactobacilli and Bifidobacteria: Microbial metabolites with both technological and health-promoting properties  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2023-07-03T14:00:20Z  
dc.journal.pagination
433-457  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Ale, Elisa Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; Argentina  
dc.description.fil
Fil: Puntillo, Melisa Anahí. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; Argentina  
dc.description.fil
Fil: Rojas, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; Argentina  
dc.description.fil
Fil: Binetti, Ana Griselda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Lactología Industrial. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Lactología Industrial; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/9781119769620.ch15  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/9781119769620.ch15  
dc.conicet.paginas
496  
dc.source.titulo
Biomolecules from Natural Sources: Advances and Applications