Mostrar el registro sencillo del ítem

dc.contributor.author
Huaylla, Claudia Alejandra  
dc.contributor.author
Kuperman, Marcelo Nestor  
dc.contributor.author
Garibaldi, Lucas Alejandro  
dc.date.available
2024-05-15T14:37:19Z  
dc.date.issued
2024-04  
dc.identifier.citation
Huaylla, Claudia Alejandra; Kuperman, Marcelo Nestor; Garibaldi, Lucas Alejandro; Comparison of two statistical measures of complexity applied to ecological bipartite networks; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 642; 4-2024; 1-10  
dc.identifier.issn
0378-4371  
dc.identifier.uri
http://hdl.handle.net/11336/235424  
dc.description.abstract
Networks are a convenient way to represent many interactions among different entities as they provide an efficient and clear methodology to evaluate and organize relevant data. While there are many features for characterizing networks, a quantity seems rather elusive: Complexity. The quantification of the complexity of networks is nowadays a fundamental problem. Here, we present a novel tool for identifying the complexity of ecological networks. We compare the behavior of two relevant indices of complexity: K-complexity and Single Value Decomposition (SVD) entropy. For that, we use real data and two types of null models. Both null models consist of randomized networks built by swapping a controlled number of links of the original ones. We analyze 23 plant-pollinator and 19 host-parasite networks as case studies. Our results show that (a) it is necessary to calculate, not only the original network K-complexity and SVD entropy but also to calculate the corresponding indices of the randomized networks (b) the density and degree distribution are essential in the characterization of a network and the randomized networks are a suitable tool to detect the network complexity, and (c) plant-pollinator networks are more complex than host-parasite networks. We found that, for the first null model, K-complexity and SVD did not change with link swapping in both pollinator-plant and host-parasite networks. For the second null model, K-complexity for pollinator-plant networks generally decreased with an increasing number of links swapped (i.e. negative slope), showing that plant-pollinator networks lose complexity with increasing link swapping. In contrast, there was a positive slope between K-complexity and link swapping for host-parasite networks, showing that these networks are less complex than plant-pollinator networks. For both types of networks, in general, the slope between K-complexity and the number of links swapped became more positive with network density. Overall, SVD entropy was less responsive to link swapping. Our analyses show that although SVD entropy has been widely used to characterize network complexity, K-complexity is a more reliable tool. Additionally, they show that degree distribution and density are important drivers of network complexity and should be accounted for in future studies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Complexity  
dc.subject
Density  
dc.subject
Entropy  
dc.subject
Random networks  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Comparison of two statistical measures of complexity applied to ecological bipartite networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-05-14T13:53:51Z  
dc.journal.volume
642  
dc.journal.pagination
1-10  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Huaylla, Claudia Alejandra. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Patagonia Norte. Instituto de Investigaciones En Recursos Naturales, Agroecologia y Desarrollo Rural. - Universidad Nacional de Rio Negro. Instituto de Investigaciones En Recursos Naturales, Agroecologia y Desarrollo Rural.; Argentina  
dc.description.fil
Fil: Kuperman, Marcelo Nestor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina  
dc.description.fil
Fil: Garibaldi, Lucas Alejandro. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Patagonia Norte. Instituto de Investigaciones En Recursos Naturales, Agroecologia y Desarrollo Rural. - Universidad Nacional de Rio Negro. Instituto de Investigaciones En Recursos Naturales, Agroecologia y Desarrollo Rural.; Argentina  
dc.journal.title
Physica A: Statistical Mechanics and its Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0378437124002735  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.physa.2024.129764