Mostrar el registro sencillo del ítem

dc.contributor.author
Asadollahi, Javad  
dc.contributor.author
Sadeghi, Somayeh  
dc.contributor.author
Treffinger Cienfuegos, Hipolito José  
dc.date.available
2024-05-14T16:03:43Z  
dc.date.issued
2024-03  
dc.identifier.citation
Asadollahi, Javad; Sadeghi, Somayeh; Treffinger Cienfuegos, Hipolito José; On tau-tilting subcategories; Canadian Mathematical Soc; Canadian Journal Of Mathematics; 3-2024; 1-38  
dc.identifier.issn
0008-414X  
dc.identifier.uri
http://hdl.handle.net/11336/235363  
dc.description.abstract
The main theme of this paper is to study τ -tilting subcategories in an abelian category A with enough projective objects. We introduce the notion of τ -cotorsion torsion triples and investigate a bijection between the collection of τ -cotorsion torsion triples in A and the collection of support τ -tilting subcategories of A , generalizing the bijection by Bauer, Botnan, Oppermann, and Steen between the collection of cotorsion torsion triples and the collection of tilting subcategories of A . General definitions and results are exemplified using persistent modules. If A=Mod-R , where R is a unitary associative ring, we characterize all support τ -tilting (resp. all support τ− -tilting) subcategories of Mod-R in terms of finendo quasitilting (resp. quasicotilting) modules. As a result, it will be shown that every silting module (resp. every cosilting module) induces a support τ -tilting (resp. support τ− -tilting) subcategory of Mod-R . We also study the theory in Rep(Q,A) , where Q is a finite and acyclic quiver. In particular, we give an algorithm to construct support τ -tilting subcategories in Rep(Q,A) from certain support τ -tilting subcategories of A .  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Canadian Mathematical Soc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ABELIAN CATEGORY  
dc.subject
(Τ-)TILTING SUBCATEGORY  
dc.subject
TORSION THEORY  
dc.subject
SILTING MODULE  
dc.subject
QUIVER REPRESENTATION  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On tau-tilting subcategories  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-05-03T13:57:49Z  
dc.journal.pagination
1-38  
dc.journal.pais
Canadá  
dc.description.fil
Fil: Asadollahi, Javad. University Of Isfahan; Irán  
dc.description.fil
Fil: Sadeghi, Somayeh. University Of Isfahan; Irán  
dc.description.fil
Fil: Treffinger Cienfuegos, Hipolito José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Canadian Journal Of Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/product/identifier/S0008414X24000221/type/journal_article  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4153/S0008414X24000221  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2207.00457