Artículo
Interfacial properties in a discrete model for tumor growth
Fecha de publicación:
03/2013
Editorial:
American Physical Society
Revista:
Physical Review E: Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics
ISSN:
1063-651X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We propose and study, by means of Monte Carlo numerical simulations, a minimal discrete model for avascular tumor growth, which can also be applied for the description of cell cultures in vitro. The interface of the tumor is self-affine and its width can be characterized by the following exponents: (i) the growth exponent β = 0.32 ( 2 ) that governs the early time regime, (ii) the roughness exponent α = 0.49 ( 2 ) related to the fluctuations in the stationary regime, and (iii) the dynamic exponent z = α / β ≃ 1.49 ( 2 ) , which measures the propagation of correlations in the direction parallel to the interface, e.g., ξ ∝ t 1 / z , where ξ is the parallel correlation length. Therefore, the interface belongs to the Kardar-Parisi-Zhang universality class, in agreement with recent experiments of cell cultures in vitro. Furthermore, density profiles of the growing cells are rationalized in terms of traveling waves that are solutions of the Fisher-Kolmogorov equation. In this way, we achieved excellent agreement between the simulation results of the discrete model and the continuous description of the growth front of the culture or tumor.
Palabras clave:
Interfaces
,
Kardar-Parisi-Zhang
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFLYSIB)
Articulos de INST.FISICA DE LIQUIDOS Y SIST.BIOLOGICOS (I)
Articulos de INST.FISICA DE LIQUIDOS Y SIST.BIOLOGICOS (I)
Citación
Moglia, Belén; Guisoni, Nara Cristina; Albano, Ezequiel Vicente; Interfacial properties in a discrete model for tumor growth
; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics; 87; 3; 3-2013; 03271301-03271310
Compartir
Altmétricas