Artículo
On maximal inequalities arising in best approximation
Fecha de publicación:
06/2009
Editorial:
Victoria University
Revista:
Journal of Inequalities in Pure and Applied Mathematics
ISSN:
1443-5756
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let f be a function in an Orlicz space L^Φ and μ(f,la) be the set all the best Φ-approximants to f, given a $sigma-σ−−lattice L. Weak type inequalities are proved for the maximal operator f∗ = supn |fn|, where fn is any selection of functions in µ(f, Ln), and Ln is an increasing sequence of σ-lattices. Strong inequalities are proved in an abstract set up which can be used for an operator as f ∗ .
Palabras clave:
BEST APPROXIMANTS
,
Φ-APPROXIMANTS
,
Σ-LATTICES
,
MAXIMAL INEQUALITIES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos(IMASL)
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Citación
Mazzone, Fernando Dario; Zo, Felipe; On maximal inequalities arising in best approximation; Victoria University; Journal of Inequalities in Pure and Applied Mathematics; 10; 6-2009; 1-21, 58
Compartir