Mostrar el registro sencillo del ítem

dc.contributor.author
Botler, Fábio  
dc.contributor.author
Jiménez, Andrea  
dc.contributor.author
Lintzmayer, Carla Negri  
dc.contributor.author
Pastine, Adrián Gabriel  
dc.contributor.author
Quiroz, Daniel  
dc.contributor.author
Sambinelli, Maycon  
dc.date.available
2024-05-10T11:44:38Z  
dc.date.issued
2023  
dc.identifier.citation
Biclique immersions in graphs with independence number 2; European Conference on Combinatorics, Graph Theory and Applications 2023; Praga; República Checa; 2023; 169-177  
dc.identifier.issn
2788-3116  
dc.identifier.uri
http://hdl.handle.net/11336/235061  
dc.description.abstract
The analogue of Hadwiger‘s Conjecture for the immersion relation states that every graph G contains an immersion of Kx(G). For graphs with independence number 2, this is equivalent to stating that every such n-vertex graph contains an immersion of K[n/2]. We show that every n-vertex graph with independence number 2 contains every complete bipartite graph on [n/2] vertices as an immersion.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Masaryk University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BICLIQUE IMMERSIONS  
dc.subject
INDEPENDENCE NUMBER 2  
dc.subject
IMMERSIONS  
dc.subject
MINORS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Biclique immersions in graphs with independence number 2  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2024-04-11T21:18:52Z  
dc.journal.pagination
169-177  
dc.journal.pais
República Checa  
dc.journal.ciudad
Praga  
dc.description.fil
Fil: Botler, Fábio. Universidade Federal do Rio de Janeiro; Brasil  
dc.description.fil
Fil: Jiménez, Andrea. Universidad de Valparaíso; Chile  
dc.description.fil
Fil: Lintzmayer, Carla Negri. Universidade Federal Do Abc; Brasil  
dc.description.fil
Fil: Pastine, Adrián Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina  
dc.description.fil
Fil: Quiroz, Daniel. Universidad de Valparaíso; Chile  
dc.description.fil
Fil: Sambinelli, Maycon. Universidade Federal Do Abc; Brasil  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.muni.cz/eurocomb/article/view/35558  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-024  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2303.06483  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Conferencia  
dc.description.nombreEvento
European Conference on Combinatorics, Graph Theory and Applications 2023  
dc.date.evento
2023-08-28  
dc.description.ciudadEvento
Praga  
dc.description.paisEvento
República Checa  
dc.type.publicacion
Journal  
dc.description.institucionOrganizadora
Computer Science Institute of Charles University  
dc.source.revista
European Conference on Combinatorics, Graph Theory and Applications  
dc.date.eventoHasta
2023-09-01  
dc.type
Conferencia