Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Stability and Relaxation Mechanisms of Citric Acid Coated Magnetite Nanoparticles for Magnetic Hyperthermia

de Sousa, María ElisaIcon ; Fernandez Van Raap, Marcela BeatrizIcon ; Rivas, PatriciaIcon ; Mendoza Zélis, PedroIcon ; Girardin, PabloIcon ; Pasquevich, Gustavo AlbertoIcon ; Alessandrini, José Luis; Muraca, DiegoIcon ; Sánchez, Francisco HomeroIcon
Fecha de publicación: 02/2013
Editorial: American Chemical Society
Revista: Journal of Physical Chemistry C
ISSN: 1932-7447
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

Magnetite (Fe3O4) nanoparticles are proper materials for Magnetic Fluid Hyperthermia applications whenever these conjugate stability at physiological (neutral pH) medium and high specific dissipation power. Here, magnetite nanoparticles 9–12 nm in size, electrostatically stabilized by citric acid coating, with hydrodynamic sizes in the range 17–30 nm, and well dispersed in aqueous solution were prepared using a chemical route. The influence of media acidity during the adsorption of citric acid (CA) on the suspension’s long-term stability was systematically investigated. The highest content of nanoparticles in a stable suspension at neutral pH is obtained for coating performed at pH = 4.58, corresponding to the larger amount of CA molecules adsorbed by one carboxylate link. Specific absorption rates (SARs) of various magnetite colloids, determined calorimetrically at a radio frequency field of 265 kHz and field amplitude of 40.1 kA/m, are analyzed in terms of structural and magnetic colloid properties. Larger dipolar interactions lead to larger Néel relaxation times, in some cases larger than Brown relaxation times, which in the present case enhanced magnetic radio frequency heating. The improvement of suspension stability results in a decrease of SAR values, and this decrease is even large in comparison with uncoated magnetite nanoparticles. This fact is related to interactions between particles.
Palabras clave: Magnetic Hyperthermia , Magnetite Nanoparticles , Magnetic Relaxation , Citric Acid Coating
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.841Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/23498
URL: http://pubs.acs.org/doi/abs/10.1021/jp311556b
DOI: http://dx.doi.org/10.1021/jp311556b
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Citación
de Sousa, María Elisa; Fernandez Van Raap, Marcela Beatriz; Rivas, Patricia; Mendoza Zélis, Pedro; Girardin, Pablo; et al.; Stability and Relaxation Mechanisms of Citric Acid Coated Magnetite Nanoparticles for Magnetic Hyperthermia; American Chemical Society; Journal of Physical Chemistry C; 117; 10; 2-2013; 5436-5445
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES