Mostrar el registro sencillo del ítem

dc.contributor.author
Palma, Juliana Isabel  
dc.contributor.author
Pierdominici Sottile, Gustavo  
dc.date.available
2024-05-08T11:06:10Z  
dc.date.issued
2024-04  
dc.identifier.citation
Palma, Juliana Isabel; Pierdominici Sottile, Gustavo; Fortuitous Correlations in Molecular Dynamics Simulations: Their Harmful Influence on the Probability Distributions of the Main Principal Components; American Chemical Society; ACS Omega; 4-2024; 1-14  
dc.identifier.issn
2470-1343  
dc.identifier.uri
http://hdl.handle.net/11336/234845  
dc.description.abstract
Nonsense correlations frequently develop between independent random variables that evolve with time. Therefore, it is not surprising that they appear between the components of vectors carrying out multidimensional random walks, such as those describing the trajectories of biomolecules in molecular dynamics simulations. The existence of these correlations does not imply in itself a problem. Still, it can present a problem when the trajectories are analyzed with an algorithm such as the Principal Component Analysis (PCA) because it seeks to maximize correlations without discriminating whether they have physical origin or not. In this Article, we employ random walks occurring on multidimensional harmonic potentials to evaluate the influence of fortuitous correlations in PCA. We demonstrate that, because of them, this algorithm affords misleading results when applied to a single trajectory. The errors do not only affect the directions of the first eigenvectors and their eigenvalues, but the very definition of the molecule’s “essential space” may be wrong. Additionally, the main principal component’s probability distributions present artificial structures which do not correspond with the shape of the potential energy surface. Finally, we show that the PCA of two realistic protein models, human serum albumin and lysozyme, behave similarly to the simple harmonic models. In all cases, the problems can be mitigated and eventually eliminated by doing PCA on concatenated trajectories formed from a large enough number of individual simulations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Molecular dynamics  
dc.subject
Principal component analysis  
dc.subject
Configurational entropy  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Fortuitous Correlations in Molecular Dynamics Simulations: Their Harmful Influence on the Probability Distributions of the Main Principal Components  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-05-06T10:53:04Z  
dc.journal.pagination
1-14  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Palma, Juliana Isabel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Pierdominici Sottile, Gustavo. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
ACS Omega  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsomega.4c01515  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acsomega.4c01515