Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Deep Learning Based UV Facial Imaging Generation

Toledo Margalef, Pablo AdrianIcon ; Navarro, Jose PabloIcon ; Hünemeier, Tábita; Pereira, Alexandre; Gonzalez-Jose, RolandoIcon ; Delrieux, Claudio AugustoIcon
Tipo del evento: Simposio
Nombre del evento: 2023 IEEE 20th International Symposium on Biomedical Imaging
Fecha del evento: 18/04/2023
Institución Organizadora: Institute of Electrical and Electronics Engineers;
Título del Libro: 2023 IEEE 20th International Symposium on Biomedical Imaging
Editorial: Institute of Electrical and Electronics Engineers
ISBN: 978-1-6654-7358-3
Idioma: Inglés
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Skin health has become a topic of interest in the recent years. To ensure a better diagnosis and treatment, the analysis of high-quality skin databases is crucial. In this regard, UV imaging is a valuable tool in detecting melanoma and other skin conditions. However, UV images present some challenges both in availability and processing. For this reason, in this work we present UVnet, a method to generate optical-to-UV facial images based on autoencoder architectures. The proposed UVnet is validated across an extension of the Baependi Heart Study and other state of the art method. Our proposal successfully generates pseudo-UV samples with an average RMSE of 0.0040 and a structural similarity index against the actual samples of 0.2984. These results show that UVnet consistently achieves higher sample quality than existing methods and provides new capabilities regarding generation of large areas of the facial epidermis. This can be regarded as an initial effort to provide affordable access to high-quality skin databases.
Palabras clave: MACHINE LEARNING , UNET , UV IMAGING , FACIAL SKIN
Ver el registro completo
 
Archivos asociados
Tamaño: 1.915Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/234810
DOI: http://dx.doi.org/10.1109/ISBI53787.2023.10230350
URL: https://ieeexplore.ieee.org/document/10230350
Colecciones
Eventos(IPCSH)
Eventos de INSTITUTO PATAGONICO DE CIENCIAS SOCIALES Y HUMANAS
Citación
Deep Learning Based UV Facial Imaging Generation; 2023 IEEE 20th International Symposium on Biomedical Imaging; Cartagena de Indias; Colombia; 2023; 1-5
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES