Mostrar el registro sencillo del ítem
dc.contributor.author
Durantini, Andres Matías
dc.contributor.author
Falcone, Ruben Dario
dc.contributor.author
Anunziata, Jorge Daniel
dc.contributor.author
Abuin, Elsa B.
dc.contributor.author
Lissi, Eduardo A.
dc.contributor.author
Chessa, Juana Josefa
dc.contributor.author
Correa, Nestor Mariano
dc.date.available
2017-09-01T19:14:11Z
dc.date.issued
2013-01
dc.identifier.citation
Durantini, Andres Matías; Falcone, Ruben Dario; Anunziata, Jorge Daniel; Abuin, Elsa B.; Lissi, Eduardo A.; et al.; An interesting case where water behaves as a unique solvent: 4-aminophthalimide emission profile to monitor aqueous environment; American Chemical Society; Journal of Physical Chemistry B; 117; 7; 1-2013; 2160-2168
dc.identifier.issn
1089-5647
dc.identifier.uri
http://hdl.handle.net/11336/23475
dc.description.abstract
The behavior of 4-aminophthalimide (4-AP), a common molecular probe utilized in solvation dynamics experiments, was revisited in polar aprotic and protic solvents using absorption, steady-state, and timeresolved fluorescence (TRES) techniques. Also, the deuterium isotope effect was investigated using D2O as solvent. The absorption spectra of 4- AP consist of two absorption bands with maxima around 300 nm (B2 band) and 370 nm (B1 band) depending on the environment, while the emission feature consists of a single band. In all the solvents investigated (excluding water), the 4-AP photophysics is similar and the emission spectra are independent of the excitation wavelength used. In water the behavior is unique and the emission spectra maximum is different depending on the excitation wavelength used. The emission maximum is 561.7 nm using the excitation wavelength that correspond to the B2 absorption band maximum (λexcB2 = 303.4 nm) but is 545.7 nm when the excitation wavelength that correspond to the B1 absorption maximum (λexcB1 = 370.0 nm) is used. Moreover, while the fluorescence decays of 4-AP in water exhibit no emission wavelength dependence at λexcB2, the situation is quite different when λexcB1 is used. In this case, we found a time-dependent emission spectrum that shifts to the blue with time. Our results show that the solvent-mediated proton transfer process displays a fundamental role in the 4-AP emission profile and for the first time a mechanism was proposed that fully explains the 4-AP behavior in every solvent including water. The deuterium isotope effect confirms the assumption because the proton-transfer process is dramatically retarded in this solvent. Consequently, we were able to elucidate not only why in water the emission spectra depend on the excitation wavelength but also why the time-dependent emission spectra shift to the blue with time. Thus, our work reveals the importance that the medium has on the behavior of a widespread dye used as chromophore. This is significant since the use of chromophores without understanding its chemistry can induce artifacts into the interpretation of solvation dynamics in heterogeneous environments, in particular, those provided by aqueous biological systems.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.relation
http://dx.doi.org/10.1021/jp402647d
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
4-Ap
dc.subject
Water
dc.subject
Photochemistry
dc.subject.classification
Otras Ciencias Químicas
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
An interesting case where water behaves as a unique solvent: 4-aminophthalimide emission profile to monitor aqueous environment
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-08-18T14:59:02Z
dc.journal.volume
117
dc.journal.number
7
dc.journal.pagination
2160-2168
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Washington DC
dc.description.fil
Fil: Durantini, Andres Matías. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Falcone, Ruben Dario. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Anunziata, Jorge Daniel. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Abuin, Elsa B.. Universidad de Santiago de Chile; Chile
dc.description.fil
Fil: Lissi, Eduardo A.. Universidad de Santiago de Chile; Chile
dc.description.fil
Fil: Chessa, Juana Josefa. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Correa, Nestor Mariano. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Journal of Physical Chemistry B
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/jp310854s
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/jp310854s
Archivos asociados