Mostrar el registro sencillo del ítem

dc.contributor.author
Gonzalez Prieto, Mariana  
dc.contributor.author
Sánchez, Francisco Adrián  
dc.contributor.author
Pereda, Selva  
dc.date.available
2017-09-01T18:53:04Z  
dc.date.issued
2014-09-04  
dc.identifier.citation
Gonzalez Prieto, Mariana; Sánchez, Francisco Adrián; Pereda, Selva; Thermodynamic model for biomass processing in pressure intensified technologies; Elsevier Science; Journal of Supercritical Fluids; 96; 4-9-2014; 53-67  
dc.identifier.issn
0896-8446  
dc.identifier.uri
http://hdl.handle.net/11336/23463  
dc.description.abstract
Pressure intensified technologies have a great potential in the context of biomass refining. A thermodynamic model able to predict phase behavior oftypical mixtures found in biomass processing technologies, containing for instance hydrocarbons, organo-oxygenated compounds and water, is required for the development of a biorefinery process simulator. Moreover, the design of particular fuel/biofuel blends also requires the support of a thermodynamic model to predict the properties of the final products. These types of mixtures are highly non-ideal due to the presence of association and solvation effects. It has already been proved that the Group Contribution with Association Equation of State (GCA-EoS) is able to predict the complex phase behavior of mixtures containing natural products and biofuels. In the last few years, several contributions agree that 2,5-dimethylfuran has a great potential as a sugar-derived fuel additive. In this work, as a case study, we extend the GCA-EoS to represent the phase equilibria of furan derivatives with hydrocarbons and alcohols. In addition, we show that the GCA-EoS is able to predict, based on the performed parameterization, high pressure data of 2,5-hydroxymethylfurfural solubility in CO2 and ethanol as co-solvent.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Biorefinery  
dc.subject
Thermodynamic  
dc.subject
Pressure Intensified Processes  
dc.subject
Biomass Upgrade  
dc.subject.classification
Otras Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Thermodynamic model for biomass processing in pressure intensified technologies  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-05-02T20:15:05Z  
dc.journal.volume
96  
dc.journal.pagination
53-67  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Gonzalez Prieto, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Sánchez, Francisco Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Pereda, Selva. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.journal.title
Journal of Supercritical Fluids  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0896844614002678  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.supflu.2014.08.024