Mostrar el registro sencillo del ítem

dc.contributor.author
Cerrotta, Santiago  
dc.contributor.author
Morel, Eneas Nicolas  
dc.contributor.author
Cerrotta, Santiago  
dc.contributor.other
Vorobioff, Juan  
dc.contributor.other
Morel, Eneas Nicolas  
dc.date.available
2024-05-06T14:03:06Z  
dc.date.issued
2022  
dc.identifier.citation
Cerrotta, Santiago; Morel, Eneas Nicolas; Cerrotta, Santiago; Aplicaciones: Procesado de señales interferométricas con redes neuronales. Estimando frecuencias; Universidad Tecnológica Nacional; 2022; 256-294  
dc.identifier.isbn
978-987-4998-82-8  
dc.identifier.uri
http://hdl.handle.net/11336/234570  
dc.description.abstract
Las Redes Neuronales Artificiales se han desarrollado y crecido de una manera considerable en los últimos años captando la atención no solo de la academia, sino también de disciplinas que van desde la medicina hasta las finanzas, interviniendo en problemáticas teóricas y también experimentales, que involucran a instituciones públicas como privadas y regiones locales como globales.Siempre es bueno recordar, y volver a disfrutar, la idea que dio inicio al surgimiento de las Redes Neuronales Artificiales. ¿Alguna vez pensaron en cómo un ser humano aprende a jugar al ping pong o identificaron los pasos que va dando un recién nacido hasta que consigue hablar fluidamente? Pocas son las personas que conocen las ecuaciones de movimiento de cuerpos esféricos inmersos en fluidos, que saben estimar la trayectoria de un movimiento paraboloide en fracciones de segundo, calcular el ángulo de impacto y velocidad necesaria de la paleta para colocar la pelota justo en el ángulo opuesto de la mesa. Menos aún son los y las niñas que conocen la anatomía de las cuerdas bocales, la construcción semántica de una oración unimembre o que realizan la transformada de Fourier para identificar las componentes espectrales propias de sus seres queridos. O que memorizan las veintitantas letras del abecedario y las 2000 palabras más usadas del idioma español. Sin embargo, muchas personas juegan al ping pong y aun muchas más saben hablar. Dado que el ser humano es capaz resolver de una manera sencilla, rápida y cotidiana problemáticas que ni la tecnología más innovadora consigue y además lo consigue sin la necesidad de solucionar ninguna ecuación diferencial. ¿Por qué en vez de formular teorías ultra racionales y modelos matemáticos con tantas hipótesis y descripciones algebraicas simplemente intentamos copiarnos (o mejor aún inspirarnos) del motor central de aprendizaje humano o también llamado Cerebro? Neuronas interconectadas con otras neuronas que reciben estímulos, se activan y transmiten nuevas respuestas que serán estímulos de otras conexiones neuronales y que ante sucesivas experiencias de aprendizaje logran moderar los estímulos para conseguir el objetivo deseado. He aquí las bases fundacionales de la Inteligencia Artificial y el Machine Learning. Estas no son técnicas nuevas, ya existen hace varias décadas, pero los avances progresivos en esta área sumado al aumento de la capacidad humana de generar, almacenar y transmitir grandes cantidades de información hicieron que estos últimos años se vuelva a realzar y valorizar su gran potencialidad. En los últimos 5 años la cantidad de publicaciones y relevancia en Inteligencia Artificial aumenta a pasos agigantados, según Google Scholar, dentro de las 10 publicaciones más citadas del año 2019 de todas las áreas más de un tercio son acerca de Redes Neuronales Artificiales. Dato que aumenta a más de un 40% para el año 2020. Además, en estos últimos años constantemente nuevas disciplinas están incorporando el uso de Inteligencia Artificial y Machine Learning. Algunas de sus finalidades son: mejorar su efectividad, automatizar procesos, detectar anomalías, reconocer comportamientos, manipular grandes cantidades de información, entre otros. El uso de Redes Neuronales Artificiales se suma, sin lugar a duda, al paradigma ya instalado de la interdisciplinaridad. Vivimos en una sociedad con un gran nivel de desarrollo y complejidad y a un ritmo acelerado, cada área del conocimiento a calado bien profundo en sus temáticas. El desafío disruptivo actual no pasa tanto por descubrir algo nuevo si no en adaptar el conocimiento existente de una disciplina a solucionar una problemática de otra. A entrecruzar los saberes y las necesidades para desarrollar nuevos enfoques teóricos y técnicos. Ya hace varias décadas que nos encontramos en la época de la Información, para tomar prácticamente cualquier decisión todas las áreas del conocimiento tienen que poder detectar (sea analógico, digital o de alguna otra manera), manipular, transformar y analizar datos para obtener información de valor. Tan importante es esta necesidad que, ya hace varios años, el procesamiento de señales se ha constituido en un área en sí y las redes neuronales en una de las herramientas de más desarrollo en la actualidad. Una característica muy interesante para analizar una señal es la velocidad con que se repite, es decir su frecuencia. Concepto central que nos ayuda a describir gran parte del universo que nos rodea. Nos permite explicar, por ejemplo: los movimientos oscilatorios que van desde resortes a modos vibracionales de moléculas, fenómenos ondulatorios de una ola en un estanque como de la luz viajando en el espacio, la transferencia de más de millones de símbolos por segundo a través de fibras ópticas, hasta incluso evidenciar la naturaleza cuántica del mundo de lo pequeño. Por este motivo estimar las frecuencias existentes en una señal es muy importante y hay mucho trabajo realizado sobre el tema.La interferometría es un conjunto de técnicas que basan en el principio de interferencia para la medición de diferentes fenómenos físicos, básicamente se centra en estudiar las maneras en que se combinan diferentes ondas electromagnéticas. Son muy utilizadas en aplicaciones que van desde la astronomía hasta la física nuclear pasando por metrología y espectroscopia entre otras. El resultado de superponer dos o más ondas que interfieren entre ellas es un patrón oscilante de intensidades, donde generalmente es en la frecuencia que se codifica la información de relevancia. Lo que se busca en este capítulo es justamente utilizar Redes Neuronales Artificiales para reemplazar herramientas convencionales del procesamiento de señales para aplicarlo en el área de interferometría de ondas electromagnéticas, puntualmente a la luz.  
dc.format
application/pdf  
dc.language.iso
spa  
dc.publisher
Universidad Tecnológica Nacional  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Redes neuronales  
dc.subject
Estimar frecuencias  
dc.subject
Convolucionales  
dc.subject
LCI  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Aplicaciones: Procesado de señales interferométricas con redes neuronales. Estimando frecuencias  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2024-04-09T13:36:05Z  
dc.journal.pagination
256-294  
dc.journal.pais
Argentina  
dc.journal.ciudad
Ciudad Autónoma de Buenos Aires  
dc.description.fil
Fil: Cerrotta, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Delta; Argentina  
dc.description.fil
Fil: Morel, Eneas Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Delta; Argentina  
dc.description.fil
Fil: Cerrotta, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Delta; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/hdl/http://hdl.handle.net/20.500.12272/6113  
dc.conicet.paginas
324  
dc.source.titulo
Inteligencia artificial y redes neuronales: Fundamentos, ejercicios y aplicaciones con Python y Matlab