Mostrar el registro sencillo del ítem

dc.contributor.author
Agost, Lisandro  
dc.contributor.author
Velázquez, Guillermo Ángel  
dc.date.available
2024-05-03T19:19:37Z  
dc.date.issued
2024-04  
dc.identifier.citation
Agost, Lisandro; Velázquez, Guillermo Ángel; Spatial modeling tool to assess and rank peri-urban land use in an agricultural region of the Midwestern United States; Elsevier; Ecological Informatics; 81; 4-2024; 1-12  
dc.identifier.issn
1574-9541  
dc.identifier.uri
http://hdl.handle.net/11336/234499  
dc.description.abstract
America is the continent with the largest area of genetically modified crops, the United States being the leading producer. Numerous studies show a panorama of potential exposure from agricultural pesticide use for this types of crops near to cities across a vast region of the United States. For the reasons mentioned above, we have chosen to investigate the following issues in this study: How does the implementation of an indexbased spatial modeling tool effectively rank the proximity of peri-urban crops, and what factors impact its effectiveness across diverse peri-urban agricultural landscapes? To address these questions, the research employs the Crop Proximity Index (CPI) model in various cities across the Midwest region of the United States. Six hundred and seventy cities in the state of Iowa were selected, and their peripheries were analysed using weighted perimeter rings, from 0 to 2000 m. The Crop Proximity Index was used to simulate a model of proximity to crops by considering the spatial quantification occupied by agriculture, forest cover, shrubs, pastures and buffer zones. This index varies from 0 to 1 and serves to rank the cities under study. It was estimated that a Crop Proximity Index equal to or >0.8 is a good approximation to a model with less proximity of crops and that only 62 cities (9%) meet this condition. Some 457 cities (68%) have CPIs equal to or <0.5 due to the large areas of crops and the low peripheral forest levels. The CPI is an index that makes it possible to obtain vital exploratory data in order to focus on future research that would determine how the proximity of agro-industrial crops has possible negative consequences for the environment and human health in greater detail.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
LAND USE MODEL  
dc.subject
GENETICALLY MODIFIED CROP  
dc.subject
FOREST  
dc.subject
AGRICULTURE PESTICIDE USE  
dc.subject
CONTAMINATION  
dc.subject
HEALTH  
dc.subject
INDEX  
dc.subject.classification
Ecología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Spatial modeling tool to assess and rank peri-urban land use in an agricultural region of the Midwestern United States  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-04-24T14:02:31Z  
dc.journal.volume
81  
dc.journal.pagination
1-12  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Agost, Lisandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina  
dc.description.fil
Fil: Velázquez, Guillermo Ángel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto de Geografía, Historia y Ciencias Sociales. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto de Geografía, Historia y Ciencias Sociales; Argentina  
dc.journal.title
Ecological Informatics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1574954124001298?via%3Dihub  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ecoinf.2024.102587