Mostrar el registro sencillo del ítem
dc.contributor.author
de Caria Di Fonzo, Pablo Jesús
dc.date.available
2024-05-03T15:46:54Z
dc.date.issued
2024-03
dc.identifier.citation
de Caria Di Fonzo, Pablo Jesús; Cycle intersection in spanning trees: A shorter proof of a conjecture and applications; Elsevier Science; Discrete Applied Mathematics; 350; 3-2024; 10-14
dc.identifier.issn
0166-218X
dc.identifier.uri
http://hdl.handle.net/11336/234491
dc.description.abstract
Consider a connected simple graph G. Given a spanning tree T of G, for each edge e in G but not in T , a cycle Ce is formed by adding the edge e to the path in T that connects the endpoints of e. The Minimum Spanning Tree Cycle Intersection problem (MSTCI for short) consists in finding a spanning tree for G that minimizes the number of intersections between this type of cycles. This problem was introduced in 2021 and its solution turned out to be difficult for general graphs, without an efficient algorithm to solve it. It was then conjectured that a solution of the problem for a graph that has a universal vertex u is the star centered at u. The conjecture was quickly proven true. In this note, we give a proof of the conjecture that is shorter than the one that has already been published. It is based on a single lemma about domination. We also explore the connections between this lemma and some graph classes, like chordal graphs and dually chordal graphs.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
SPANNING TREE
dc.subject
CYCLE
dc.subject
MSTCI PROBLEM
dc.subject
CHORDAL GRAPH
dc.subject
DUALLY CHORDAL GRAPH
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Cycle intersection in spanning trees: A shorter proof of a conjecture and applications
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-04-29T13:32:17Z
dc.journal.volume
350
dc.journal.pagination
10-14
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: de Caria Di Fonzo, Pablo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina
dc.journal.title
Discrete Applied Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0166218X24000295
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.dam.2024.01.018
Archivos asociados