Artículo
Constructing uniform 2-factorizations via row-sum matrices: Solutions to the Hamilton-Waterloo problem
Fecha de publicación:
01/2024
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Combinatorial Theory Series A
ISSN:
0097-3165
e-ISSN:
1096-0899
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we formally introduce the concept of a row-sum matrix over an arbitrary group G. When G is cyclic, these types of matrices have been widely used to build uniform 2-factorizations of small Cayley graphs (or, Cayley subgraphs of blown-up cycles), which themselves factorize complete (equipartite) graphs. Here, we construct row-sum matrices over a class of non-abelian groups, the generalized dihedral groups, and we use them to construct uniform 2-factorizations that solve infinitely many open cases of the Hamilton-Waterloo problem, thus filling up large parts of the gaps in the spectrum of orders for which such factorizations are known to exist.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMASL)
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Citación
Burgess, A. C.; Danziger, P.; Pastine, Adrián Gabriel; Traetta, T.; Constructing uniform 2-factorizations via row-sum matrices: Solutions to the Hamilton-Waterloo problem; Academic Press Inc Elsevier Science; Journal of Combinatorial Theory Series A; 201; 1-2024; 1-26
Compartir
Altmétricas