Mostrar el registro sencillo del ítem

dc.contributor.author
Tagarelli, V. E.  
dc.contributor.author
Vega Castillo, Jesus Eduardo  
dc.contributor.author
Montenegro Hernandez, Alejandra  
dc.date.available
2024-04-29T10:03:03Z  
dc.date.issued
2024-04  
dc.identifier.citation
Tagarelli, V. E.; Vega Castillo, Jesus Eduardo; Montenegro Hernandez, Alejandra; Chemical compatibility of solid oxide fuel cell air electrode Pr4Ni3O10±δ with commercial electrolytes; Wiley VCH Verlag; Fuel Cells; 4-2024; 1-8  
dc.identifier.issn
1615-6846  
dc.identifier.uri
http://hdl.handle.net/11336/234148  
dc.description.abstract
The chemical reactivity between Pr4Ni3O10±δ (3-PNO) electrodes andY0.08Zr0.92O1.96 (YSZ), Ce0.9Gd0.1O1.95 (GDC), and La0.9Sr0.1Ga0.8Mg0.2O2.85(LSGM) electrolytes was analyzed by electrochemical impedance spectroscopyand X-ray diffraction. 3-PNO powders were synthesized by two different chemicalroutes, one of them uses hexamethylenetetramine (HMTA) as a complexingagent (route A) while the other citrates (route B). The samples observed by scanningelectron microscopy presented different microstructures; route A powderspresent small submicronic grains with an open microstructure while route Bpowders are formed by larger well-connected grains. The polarization resistance(RP) values for 3-PNO/YSZ cells are one order of magnitude higher than thoseof 3-PNO/GDC and 3-PNO/LSGM cells. The RP for both cells 3-PNO/GDCand 3-PNO/LSGM and its evolution in time suggest that chemical reactivitytakes place during the adhesion treatment and electrochemical measurements.The microstructure plays a crucial role in RP and the degradation rate; 3-PNOobtained by route A (3-PNO-HMTA) exhibits the best electrochemical performancesince these powders present a well-loosemorphology and a large exposedarea. However, this fact makes them active chemically, so the increase of RPwith time is slower for 3-PNO electrodes prepared by route B (3-PNO-Cit), sincethe rate of chemical reactivity with the electrolyte is slower.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley VCH Verlag  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CHEMICAL COMPATIBILITY  
dc.subject
EIS  
dc.subject
RUDDLESDEN POPPER  
dc.subject
SOFC  
dc.subject.classification
Cerámicos  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Chemical compatibility of solid oxide fuel cell air electrode Pr4Ni3O10±δ with commercial electrolytes  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-04-26T12:05:07Z  
dc.journal.pagination
1-8  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Tagarelli, V. E.. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina  
dc.description.fil
Fil: Vega Castillo, Jesus Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. YPF - Tecnología; Argentina  
dc.description.fil
Fil: Montenegro Hernandez, Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina  
dc.journal.title
Fuel Cells  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/fuce.202300176  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/fuce.202300176