Artículo
Application of machine learning to predict unbound drug bioavailability in the brain
Fecha de publicación:
04/2024
Editorial:
Frontiers Media
Revista:
Frontiers in Drug Discovery
ISSN:
2674-0338
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Purpose: Optimizing brain bioavailability is highly relevant for the development of drugs targeting the central nervous system. Several pharmacokinetic parameters have been used for measuring drug bioavailability in the brain. The most biorelevant among them is possibly the unbound brain-to-plasma partition coefficient, Kpuu,brain,ss, which relates unbound brain and plasma drug concentrations under steady-state conditions. In this study, we developed new in silico models to predict Kpuu,brain,ss.Methods: A manually curated 157-compound dataset was compiled from literature and split into training and test sets using a clustering approach. Additional models were trained with a refined dataset generated by removing known P-gp and/or Breast Cancer Resistance Protein substrates from the original dataset. Different supervised machine learning algorithms have been tested, including Support Vector Machine, Gradient Boosting Machine, k-nearest neighbors, classificatory Partial Least Squares, Random Forest, Extreme Gradient Boosting, Deep Learning and Linear Discriminant Analysis. Good practices of predictive Quantitative Structure-Activity Relationships modeling were followed for the development of the models.Results: The best performance in the complete dataset was achieved by extreme gradient boosting, with an accuracy in the test set of 85.1%. A similar estimation of accuracy was observed in a prospective validation experiment, using a small sample of compounds and comparing predicted unbound brain bioavailability with observed experimental data.Conclusion: New in silico models were developed to predict the Kpuu,brain,ss of drug candidates. The dataset used in this study is publicly disclosed, so that the models may be reproduced, refined, or expanded, as a useful tool to assist drug discovery processes.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Morales, Juan Francisco; Ruiz, María Esperanza; Stratford, Robert E.; Talevi, Alan; Application of machine learning to predict unbound drug bioavailability in the brain; Frontiers Media; Frontiers in Drug Discovery; 4; 4-2024; 1-14
Compartir
Altmétricas