Artículo
Scale-invariance underlying the logistic equation and its social applications
Fecha de publicación:
11/2012
Editorial:
Elsevier Science
Revista:
Physics Letters A
ISSN:
0375-9601
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
On the basis of dynamical principles we i) advance a derivation of the Logistic Equation (LE), widely employed (among multiple applications) in the simulation of population growth, and ii) demonstrate that scale-invariance and a mean-value constraint are sufficient and necessary conditions for obtaining it. We also generalize the LE to multi-component systems and show that the above dynamical mechanisms underlie a large number of scale-free processes. Examples are presented regarding city-populations, diffusion in complex networks, and popularity of technological products, all of them obeying the multi-component logistic equation in an either stochastic or deterministic way.
Palabras clave:
Logistic Equation
,
Scale- Invariance
,
Social System
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Articulos de INST.DE FISICA LA PLATA
Citación
Hernando, A.; Plastino, Ángel Luis; Scale-invariance underlying the logistic equation and its social applications; Elsevier Science; Physics Letters A; 377; 3-4; 11-2012; 176-180
Compartir
Altmétricas