Artículo
On the structure of the fundamental subspaces of acyclic matrices with in the diagonal
Fecha de publicación:
08/2023
Editorial:
American Journal of Combinatorics
Revista:
American Journal of Combinatorics
ISSN:
2768-4202
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A matrix is called acyclic if replacing the diagonal entries with 0, and the nonzero diagonal entries with 1, yields the adjacency matrix of a forest. In this paper we show that the null space and the rank of an acyclic matrix with 0 in the diagonal is obtained from the null space and the rank of the adjacency matrix of the forest by multipliying by nonsingular diagonal matrices. We combine these with an algorithm for finding a sparsest basis of the null space of a forest to provide an optimal time algorithm for finding a sparsest basis of the null space of acyclic matrices with 0 in the diagonal.
Palabras clave:
ACYCLIC MATRIX
,
NULL SPACE BASIS
,
SPARSEST BASIS
,
RANK BASIS
,
TREE
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMASL)
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Citación
Jaume, Daniel Alejandro; Pastine, Adrián Gabriel; On the structure of the fundamental subspaces of acyclic matrices with in the diagonal; American Journal of Combinatorics; American Journal of Combinatorics; 2; 8-2023; 39-58
Compartir