Artículo
Rényi entropies in the n →0 limit and entanglement temperatures
Fecha de publicación:
11/2023
Editorial:
American Physical Society
Revista:
Physical Review D
ISSN:
2470-0010
e-ISSN:
2470-0029
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Entanglement temperatures (ET) are a generalization of Unruh temperatures valid for states reduced to any region of space. They encode in a thermal fashion the high energy behavior of the state around a point. These temperatures are determined by an eikonal equation in Euclidean space. We show that the real-time continuation of these equations implies ballistic propagation. For theories with a free UV fixed point, the ET determines the state at a large modular temperature. In particular, we show that the n→0 limit of Rényi entropies Sn, can be computed from the ET. This establishes a formula for these Rényi entropies for any region in terms of solutions of the eikonal equations. In the n→0 limit, the relevant high-temperature state propagation is determined by a free relativistic Boltzmann equation, with an infinite tower of conserved currents. For the special case of states and regions with a conformal Killing symmetry, these equations coincide with the ones of a perfect fluid.
Palabras clave:
Information Theory
,
Unruh Effect
,
Renyi Entropy
,
Quantum Field Theory
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Articulos de INST.DE FISICA LA PLATA
Citación
Agón, Cesar A.; Casini, Horacio German; Martinez, Pedro Jorge; Rényi entropies in the n →0 limit and entanglement temperatures; American Physical Society; Physical Review D; 108; 10; 11-2023; 1-23
Compartir
Altmétricas